
Università degli Studi di Salerno

Facoltà di Scienze Matematiche Fisiche e Naturali

Tesi di Laurea Specialistica in

Informatica

Solid Angle based Ambient
Obscurance in Image Space

Relatori Candidato
Prof. Vittorio Scarano Dario Scarpa
Prof. Ugo Erra

Anno Accademico 2012-2013

Acknowledgements

First of all, I’d like to thank my family for supporting me during my years
at the university - ’cause studying on the couch when someone else pays the
bills is definitely easier.

Then, my friends and classmates, with a special mention for the ones I
have spent many hours at the university, studying or working together on a
number of interesting projects: Angelo Cafaro, Giannicola Scarpa, Raffaele
Spinelli, Vincenzo Fariello, Carla Del Regno, Federica Sarro, Laura Maffei,
Alessandro Barone, Carlo Maresca, Marco Gatto and the many others that
don’t come to my mind right now (sorry!).

Special thanks also to the friends and team-mates I rarely meet but
whom I often have fun and collaborate online on a number of projects -
Cristiano Caliendo, Davide Canavero - guys, if it wasn’t for you, I would
have graduated much sooner. Maybe.

Finally, thanks to my advisors and to everyone working in ISISLab,
where high expertise and knowledge meet friendliness and easygoingness
(yeah, that’s an actual word, I checked), to go where no man has gone
before - but never getting bored or lost along the way.

This thesis has been developed in

i

Contents

1 Introduction 1
1.1 Basic Concepts . 1

1.1.1 Rendering . 1
1.1.2 Light, color, shading 2
1.1.3 Local and Global Illumination 2
1.1.4 Ambient Light and Ambient Obscurance 3
1.1.5 Indirect Lighting . 4
1.1.6 Image-Space methods and Deferred Rendering 4

1.2 Objectives and results . 5
1.2.1 Implementaton details 5

1.3 Contents overview . 6

2 Theoretical foundations 9
2.1 Solid Angle . 9
2.2 Ambient Occlusion . 11
2.3 Ambient Obscurance . 13
2.4 Blinn-Phong Reflection model 15

2.4.1 Surface Materials and Light Sources 16
2.4.2 Direct Lighting . 18
2.4.3 Ambient Lighting . 21
2.4.4 Adding ambient obscurance to the model 21

3 Related works 23
3.1 2005 - Dynamic Ambient Occlusion and Indirect Lighting . . 23
3.2 2007 - Hardware Accelerated Ambient Occlusion Techniques

on GPUs . 24
3.3 2007 - CryEngine2 Screen Space Ambient Occlusion 25
3.4 2008 - StarCraft 2 Ambient Occlusion 26
3.5 2008 - Image-space horizon-based ambient occlusion 26

ii

CONTENTS iii

3.6 2011 - Alchemy Screen-Space Ambient Obscurance 27

4 SaSSAO: Solid Angle based SSAO 28
4.1 Hemisphere Partitioning . 29

4.1.1 Partitioning for the whole hemisphere 32
4.2 Ambient Obscurance calculation 34

4.2.1 Area Calculation . 34
4.2.2 AO calculation . 35
4.2.3 AO filtering . 42

5 SaSSAO implementation 44
5.1 OpenGL and GLSL . 44
5.2 YARS . 47

5.2.1 Supporting libraries 47
5.2.2 Architecture . 47
5.2.3 Scene Management . 48
5.2.4 Rendering . 49
5.2.5 Shaders . 50

5.3 Deferred Shading . 52
5.4 SaSSAO rendering pipeline 53

5.4.1 Initialization . 56
5.4.2 Geometry Pass . 58
5.4.3 Obscurance Processing Pass 60
5.4.4 Filtering/Compositing Pass 60

5.5 Parameters and performance 63
5.5.1 aoMultiplier . 63
5.5.2 Number of Samples 63
5.5.3 Number of triangle buckets 63
5.5.4 Sampling Pattern . 64
5.5.5 Sampling Radius . 64
5.5.6 Max Distance . 65
5.5.7 Angle Bias . 65

5.6 Adding indirect illumination 66
5.6.1 Pipeline modification 66

6 SaSSAO testing 70
6.1 Blender Ambient Occlusion 71
6.2 SSIM index . 73
6.3 Testing infrastructure . 73
6.4 Test Results . 76

CONTENTS iv

7 Conclusions 90
7.1 Future work . 91

7.1.1 Directional occlusion, bent normals 91
7.1.2 Indirect lighting . 92
7.1.3 Compute shaders . 92
7.1.4 Testing methodology and temporal coherence 93

Bibliography 93

A Appendix 98
A.1 Additional material and code listings 98

Chapter 1

Introduction

We start by succinctly defining the main concepts and terminology needed
to understand the scope of our work.
Then, we shortly discuss our objectives and results.
Finally, we present a short summary of the following chapters to show how
the thesis is organized.

1.1 Basic Concepts

1.1.1 Rendering

Rendering is the process of converting a description of a three-dimensional
scene into an image. A rendering system involves a number of algorithms and
data structures that process and handle the scene description in extremely
different ways according to the desired result.

A rough distinction between rendering systems is the one between off-
line rendering and real-time rendering. Off-line rendering involves long
processing times and aims to produce high quality images, often with a
high degree of photorealism derived from an accurate, physically grounded
simulation of light propagation.

On the opposite side, we have real-time rendering, suitable to pro-
duce interactive applications in which the user is able to freely navigate
and modify the virtual environment. Three-dimensional videogames are the
most popular (but not only) application heavily based on real-time render-
ing.

A real-time rendering system must produce an image in just a few mil-
liseconds: the desired frequency is usually 60 frames per second (fps), that
account for about 16 ms of processing time to generate each frame. In many

1

CHAPTER 1. INTRODUCTION 2

circumstances 30 fps can be acceptable, and you can perceive some inter-
activity at 12-15 fps, but anyway we are in a totally different domain from
off-line rendering, where rendering times are measured in minutes or even
hours.

Of course, with such limited processing time available, real-time render-
ing abandons accurate physics simulation in favour of crude approximations
that, anyway, try go give a visually pleasing and convincing result.

In this thesis, we work in the domain of real-time rendering.

1.1.2 Light, color, shading

The essence of the rendering process is setting the colors of pixels composing
the output image. Light is electromagnetic energy that travels through
space. Color is defined by the interaction between light and matter, so we
need models that approximate the behaviour of light in the real world (or
that define a non-realistic behaviour for artistic purposes). Such models take
the name of illumination models. In computer graphics, shading is the
process of altering color according to an illumination model or to achieve a
number of special effects.

1.1.3 Local and Global Illumination

In very simple terms, light is emitted by a source (natural or artificial) and
interacts with objects in the scene: when it hits a surface, part is absorbed,
part is scattered and propagates in new directions. Finally, a tiny portion of
the light travelling through the scene reaches a sensor that absorbs it (like
the human eye).

The recursivity of the process, with light bouncing indefinitely around
the scene, is what makes calculating illumination computationally heavy.

So, a reasonable simplification historically made in real-time rendering to
achieve acceptable performance is taking account only of the direct light
when shading surfaces. Direct light on a surface is the light that comes
directly from a light source, and not from a bounce on surrounding geometry.
This is called local illumination, from the fact that to be computed it only
needs local information: the surface data at the visible point. Differently,
the term global illumination refers to illumination models that also take
account of indirect light and so need information about other objects that
the one being shaded.

As can be seen in figure 1.1, global illumination algorithms give much
better results, but are currently suitable only to off-line rendering.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: direct illumination VS global illumination

1.1.4 Ambient Light and Ambient Obscurance

With only direct illumination, all the surfaces not directly lit are totally
black, as shown by the top image in figure 1.2.

A simple way to approximate the amount of indirect light scattered in
the environment is adding to the calculated direct lighting of any surface an
additional amount of constant radiance, called ambient light (figure 1.2,
in the middle).

Being constant, ambient light doesn’t vary depending on the character-
istics of light sources nor the position and orientation of surfaces, and so,
unfortunately, usually gives a “flat” look to rendered scenes, especially if
not coupled with good direct lighting.

A substantial improvement to the ambient light approximation comes
from ambient occlusion.

The essence of ambient occlusion is calculating a visibility factor for a
point, by checking for intersections with the surrounding geometry that, in-
tuitively, will stop some amount of indirect light. So, the visibility factor can
be used to modulate the ambient light, resulting in occluded zones getting
darker and giving perceptually pleasing results in the rendered images.

Figure 1.3 shows an example of the process, with the obscurance factor
shown in the top image, the modulated ambient light in the middle one, and
the final compositing, done by adding the direct light, in the bottom.

By depending not only on the point information, but also from sur-
rounding geometry data, ambient occlusion is classified as related to global
illumination, even if, of course, is just a crude approximation.

Ambient obscurance is a refinement of ambient occlusion that, in the

CHAPTER 1. INTRODUCTION 4

calculation of the visibility factor, takes into account the distance of the
occluding geometry, causing the occlusion to “fade out” with distance.

1.1.5 Indirect Lighting

While indirect lighting is not the primary focus of this thesis, there’s a
generic observation worth mentioning: usually, the visibility factor used
in the ambient occlusion approximation is calculated by sampling the sur-
rounding geometry to detect occlusors. If direct illumination has already
been calculated for such occluding geometry, we can easily sample that too
and treat the point belonging to the occlusor as radiance emitter to roughly
approximate the first bounce of indirect light.

An interesting result shown in [TL04] is that the first bounce of indirect
light is the most perceptually important: calculating the second bounce too
gives a minimal improvement, and calculating the third bounce is close to
useless.

We will exploit these observations to give some visually pleasing color
bleeding effects related to the first bounce of indirect light.

1.1.6 Image-Space methods and Deferred Rendering

The rendering pipeline used in real-time rendering involves a number of
pretty standardized stages, each one using a number of algorithms to ac-
complish different tasks. The last stage of the pipeline is rasterization,
that is the crucial part where elements processed in the previous stages are
finally mapped to coloured pixels in a buffer that, in a straightforward ren-
dering setup, gets displayed on the screen. Image-space methods work
on information gathered from the rasterization pass, doing additional pro-
cessing on the produced image before finally displaying it. This brings some
advantages (such as independence from scene complexity), but also has some
drawbacks, namely the limited amount of information available.

Even if for some post-processing effects the information produced by
default suffices, a wider range of possibilities is available when we use tech-
niques related to deferred rendering to bring more information in custom
renderbuffers and add rendering passes that process them. We still work
with images (this, after all, originates the name “image-space methods”),
but we encode in pixel colors arbitrary information about the rendered point.

More details in the following chapters will clarify the inner working and
rationale of these techniques.

CHAPTER 1. INTRODUCTION 5

1.2 Objectives and results

We derive a new approximation of ambient obscurance focused on improving
quality of the state of the art techniques used in real-time rendering.

We attempt to stay close to the original definition of ambient obscurance
and bring into image-space, building up on the deferred rendering approach,
information suitable to an accurate estimate of visibility that takes account
of the position and orientation of near occluding geometry, allowing us to
handle some situations that would result in artefacts or erroneous calcu-
lations with other techniques. At the best of our knowledge, the approxi-
mation of covered solid angle (used in our occlusion estimate) considering
the area of surfaces, and the hemisphere partitioning that gives directional
information about coverage, both done in image-space, are original contri-
butions that could be further explored in future works.

To evaluate the quality of results, we compare screen-shots from our
implementation with images rendered off-line in Blender, a popular open-
source 3D graphics software that features a configurable ray-traced calcula-
tion of ambient occlusion and is easily instrumented through Python script-
ing.

For the comparison, we use the Structural Similarity (SSIM) Index
[WBSS04], a metric that attempts to measure similarity between images in
a way somewhat consistent with the human eye perception.

Our implementation achieves lower performances respect to some cur-
rently popular and widely adopted Screen-Space AO approximations, but
still obtains real-time frame rates on the current hardware generation. Also,
it offers many parameters that can be tuned to trade quality for efficiency.

1.2.1 Implementaton details

For learning purposes and to achieve total freedom in the implementation of
the technique, we have built a rendering sandobox (named YARS, acronym
of the unimaginative “Yet Another Rendering Sandbox”) from the ground
up.

We based YARS on modern, shader based OpenGL 4.3, trying to follow
best-practices and using features that should help achieve good performances
on modern hardware.

Nonetheless, YARS is currently a basic and incomplete environment that
lacks many features generically implemented in “real” 3D engines.

CHAPTER 1. INTRODUCTION 6

It would be interesting to implement our approach in a well-established
rendering engine, such as G3D [EHF+], and see if better performances can
be achieved.

1.3 Contents overview

• chapter 2 - Theoretical Foundations
We explain the concept of solid angle and define ambient obscurance.
Than, we briefly show the Blinn-Phong illumination model, explaining
how ambient occlusion fits into it. The minimal information needed
to understand the following topics will be provided.

• chapter 3 - Related Works
We do a quick survey of the most influential and inspiring techniques
related to image-space ambient occlusion/obscurance, and give refer-
ences to additional sources to explore the field of interactive global
illumination.

• chapter 4 - Solid Angle based SSAO
We illustrate how our technique works from a theoretical perspective,
defining its components and explaining how they fit together.

• chapter 5 - SaSSAO implementation
First, we briefly describe the OpenGL rendering sandbox we built,
YARS. Then, we give detailed information about the implementation
of our ambient obscurance solution, focusing on the adopted rendering
pipeline and on some particularly interesting details. Additionally,
we quickly describe a modification of our technique that adds color-
bleeding effects (resulting from the first bounce of indirect light).

• chapter 6 - SaSSAO testing
We describe our simple testing architecture based on Blender and the
SSIM index, and show some results. Some information about the rela-
tionship between parameter values and performances will be discussed.

• chapter 7 - Conclusions
We recap and evaluate the achieved results, while giving some ideas
about possible improvements or alternative roads we couldn’t explore
due to time constraints

CHAPTER 1. INTRODUCTION 7

Figure 1.2: compositing direct and ambient light

CHAPTER 1. INTRODUCTION 8

Figure 1.3: compositing direct light and ambient light modulated by ambient
obscurance

Chapter 2

Theoretical foundations

We start by describing the concept of solid angle, often recurring in rendering
formulas and particularly relevant to the evaluation of visibility, as we’ll
explain defining ambient occlusion and obscurance right afterwards. Then,
we show the illumination model we adopted, Blinn-Phong, and how ambient
obscurance fits into it.

2.1 Solid Angle

Solid angles are the 3D counterpart of planar angles, extending the 2D unit
circle to a 3D unit sphere.

As you can measure the planar angle subtended by some object on a
plane with respect to some position, you can measure the solid angle sub-
tended by an arbitrary oriented surface at a point P .

On the plane, projecting an object onto the unit circle covers some length
s. This is the angle subtended by the object and is measured in radians.

An arc of a circle with the same length as the radius of that circle corre-
sponds to an angle of 1 radian. This implies, being the length of the entire
circumference 2πr, that a full circle corresponds to an angle of 2π radians.

The solid angle s subtended by an object c in three dimensions is com-
puted by projecting c onto the unit sphere and measuring the area of its
projection. Solid angles are measured in steradians.

Any area on a sphere that amounts to the square of the sphere radius

9

CHAPTER 2. THEORETICAL FOUNDATIONS 10

Figure 2.1: planar angle and solid angle (images taken from [PH10])

subtends precisely one steradian. A sphere surface area measures 4πr2, so
the entire sphere subtends a solid angle of 4π steradians.

The solid angle for an arbitrary oriented surface subtended at a point
can be calculated through a surface integral, but we will restrict the problem
to a much simpler approximation suitable to our needs.

For our purposes, two things to remember about solid angles are:

• a hemisphere subtends 2π steradians (the full sphere, as we wrote,
subtends 4π steradians)

• the set of points on the unit sphere surface centered at point P can
be used to describe the direction vectors anchored at P (often these
vectors are referred using the ω symbol)

CHAPTER 2. THEORETICAL FOUNDATIONS 11

2.2 Ambient Occlusion

As we briefly introduced in 1.1.4, shadowing of ambient light is referred to
as ambient occlusion.

It has been shown in [LB00] that ambient occlusion offers a better per-
ception of the 3D shape of the displayed objects, and a concrete proof of its
effectiveness is the popularity the effect has gained in videogame engines.

The mathematical definition of ambient occlusion is related to the con-
cept of solid angle that we just described.

In fact, the occlusion Ap̄ at a point p̄ on a surface with normal n̂ can be
computed by integrating the visibility function over the hemisphere Ω with
respect to projected solid angle:

Ap̄ =
1

π

∫

Ω

Vp̄,ω̂(n̂ · ω̂) dω

where

• Vp̄,ω̂ is the visibility function at p̄:

◦ 0 if p̄ is occluded in the direction ω̂

◦ 1 otherwise

• dω is the infinitesimal solid angle step of the integration variable ω̂.

A simple way to approximate this integral in practice, in off-line render-
ing, is based on ray-tracing.

Rays are shot in uniform pattern across the hemisphere over point p̄,
and an occlusion value can be calculated as the number of rays that hits
geometry divided by the total number of rays shot.

Rays can be restricted to a certain length, avoiding distant geometry to
be taken into account while calculating the occlusion value. This is funda-
mental in closed environments, that would otherwise result in total occlusion
at every point, and subsequently the complete removal of ambient light.

We will use ray-traced ambient occlusion, of which you can see an ex-
ample in fig. 2.2, to evaluate the quality of our method in chapter 6.

CHAPTER 2. THEORETICAL FOUNDATIONS 12

Figure 2.2: an example of ambient occlusion calculated through ray-tracing
in Blender. The images are rendered using rays of two different lengths, 0.5
(first image) and 1.0 (second image). Some areas are dark in the second
image but not in the first, meaning that the occlusion to those areas comes
from geometry more distant that 0.5

CHAPTER 2. THEORETICAL FOUNDATIONS 13

2.3 Ambient Obscurance

Ambient Obscurance is an extension of ambient occlusion defined in [ZIK98].
A falloff function that reduces the influence of occlusion with distance is
introduced in the formula:

AOp̄ =
1

π

∫

Ω

ρ(Dp̄,ω̂)(n̂ · ω̂) dω

If you compare this and the formula of ambient occlusion, you’ll see that
the difference is in the fact that in place of the binary visibility function
Vp̄,ω̂, we have ρ(Dp̄,ω̂) , where

• Dp̄,ω̂ is

◦ the distance between p and the first intersection point along ω̂, if
any

◦ +∞ if there are no intersections along ω̂

• ρ is the decreasing falloff function, with

◦ ρ(0) = 1

◦ ρ(x) = 0 if x > r, where r is the maximum distance at which any
intersecting geometry is considered as bringing occlusion

This formulation also solves elegantly the problem of enclosed geometry
that we discussed at the end of the previous paragraph.

In figure 2.3 you can see ambient obscurance calculated with the Alchemy
screen-space ambient obscurance algorithm, one of the best AO approxima-
tion algorithms suitable for real-time rendering currently known.

CHAPTER 2. THEORETICAL FOUNDATIONS 14

Figure 2.3: an example of ambient obscurance calculated with the Alchemy
algorithm, from [MOBH11]

CHAPTER 2. THEORETICAL FOUNDATIONS 15

2.4 Blinn-Phong Reflection model

Blinn-Phong was the model implemented by default in the older, fixed-
function pipeline GPUs. It was proposed in [Bli77] as a variation of the
Phong model defined in [Pho75]

It is probably the most popular illumination model in real-time render-
ing, and many asset formats contain material descriptions consisting mainly
of the coefficients used by this model. So, even if there’s an on-going shifting
to more physically-based models and materials, thanks to the freedom given
by the programmable pipeline of current GPUs, we decide to use the Blinn-
Phong model because it’s easy to implement and understand. Additionally,
inserting ambient occlusion in the model is straightforward.

The basic idea of this lighting model is adding a set of independently
computed lighting components to get a total lighting effect for a particular
spot on a material surface, as seen from a certain direction (the camera di-
rection, also referred to as the “eye direction”).

The three additive components are called diffuse, specular and am-
bient. On a higher level, the idea is that the illumination of a point P

is
I = Ia + Id + Is

where Id (diffuse component) and Is (specular component) approximate di-
rect lighting due to light sources, and Ia (ambient component) is a constant
term that roughly approximates indirect light scattered into the environ-
ment, as introduced in 1.1.4. Figure 2.4 shows a visual example of the
process.

Figure 2.4: an example of how the three components are added, giving the
final result

CHAPTER 2. THEORETICAL FOUNDATIONS 16

2.4.1 Surface Materials and Light Sources

As we told in 1.1.2, color is defined by the interaction of light and matter,
so it not surprising that shading geometry requires information about the
surface material and about the light sources.

A material description suitable for the model is composed of these
attributes:

• emission: light produced by the material (if any)

• ambient: part of ambient light that is scattered

• diffuse: part of diffuse light that is scattered

• specular: part of specular light that is scattered

• shininess: level of sharpness of the specular reflection

All these attributes, except for the shininess that is a single floating
point value, are RGB vectors.

A light source, other than other attributes we’ll discuss later, also has an
RGB vector that indicates the intensity for each color, ranging from dark-
ness at (0.0, 0.0, 0.0) to a maximum brightness white at (1.0, 1.0, 1.0).

CHAPTER 2. THEORETICAL FOUNDATIONS 17

It is possible to have separate RGB attributes (ambient, specular
and diffuse) even for light sources, and in that case, when the
interaction between light and material is calculated, each of the
ambient/specular/diffuse color of the material is multiplied by the
respective ambient/specular/diffuse color of the light source. We
stick to a simpler (and more common/desiderable) approach, that
instead defines light sources as having a single color attribute,
used in both the diffuse and specular calculations, and no specific
ambient attribute.

If you are wondering what is the sense of an ambient attribute for
a light source, as we have explained that ambient light is a global
settings not related to light sources, it’s worth knowing that in some
cases it could make sense to calculate the global scene ambient light
by adding to a single base value some contributions tied to the in-
dividual light sources. Specifically, it makes sense if you allow to
turn off some light sources in the scene: when you turn off a light
source, you remove its ambient light contribution, that represents
the indirect light scattered into the environment due to that source.

The RGB values in material descriptions correspond to the proportion
which the respective color is reflected: for example, if a material M has
M.diffuse = (1.0, 0.0, 0.0), it reflects all the red diffuse light it receives,
and absorbs all the green and blue light. So, if you point a white light L
(meaning that L.color = (1.0, 1.0, 1.0)) on a surface made of material M , it
will look as red to the camera. If you point to it a totally blue light B (
B.color = (0.0, 0.0, 1.0)) all the blue light will be absorbed and the surface
will appear black. So, it is natural to model the interaction with between
the color of the light and the color of the surface through multiplication.

The different material attributes are useful to approximate the behaviour
of different kinds of surfaces. The main characteristic that affects how light
is reflected is the level of roughness/smoothness that can be observed at the
microscopic level:

• a rough surface (e.g. chalk) scatters light in all directions, because at
the microscopic level, due to the differently oriented small facets that
compose it, it will cause light to bounce around, as shown in the left
image of figure 2.5.

CHAPTER 2. THEORETICAL FOUNDATIONS 18

• a smooth surface (e.g. plastic, metal) tends to reflect light in a specific
direction, as in the right image of 2.5. A perfect mirror is the ideal
smooth surface.

Figure 2.5: light bouncing on a rough and on a smooth surface

Giving different values to the diffuse, specular and shininess attributes
of a material description can approximate the behaviour of a wide range
of real-world materials. Figure 2.6 shows effectively examples of how a
sphere of different materials (totally diffuse, totally specular, and with par-
tial glossiness) would reflect light.

Let’s now see how direct lighting (diffuse and specular) is actually com-
puted, and then we’ll discuss ambient lighting/obscurance.

2.4.2 Direct Lighting

In the actual calculation of the diffuse/specular components, a number of
vectors, shown in figure 2.7, are used together with the material/light source
info:

• N , the surface normal

• L, normalized vector in direction of light source

• R, normalized vector in direction of specular light reflection

• V , normalized vector in direction of viewer

• H, the “halfway” vector, a normalized vector in direction of V+L
2

The main point worth noting is that the diffuse component does only
depend on the position and orientation of the light and of the surface (L
and N vectors), while the specular component is different depending on the

CHAPTER 2. THEORETICAL FOUNDATIONS 19

Figure 2.6: images showing a fully diffuse reflection on a rough surface,
a fully specular reflection on a glossy surface, and something in between.
Images taken from http://www.pernroth.nu/lightandmaterials/

position of the viewer. This happens because the specular highlights refer
to how much the surface material acts like a mirror, and so vary according
to how much the viewer direction V is close to the direction of specular light
reflection R.

Diffuse Component

The diffuse material attribute, together with the L and N vectors, is used
to calculate the diffuse reflection component on the basis of Lambert’s
cosine law, defined in [Lam60].

The law says that the apparent brightness of an ideal diffusely reflecting
surface is proportional to the cosine of the angle between the surface normal
and the direction of the incident light.

According to our notation about involved vectors, and assuming m and

http://www.pernroth.nu/lightandmaterials/

CHAPTER 2. THEORETICAL FOUNDATIONS 20

Figure 2.7: the vectors involved in the Blinn-Phong calculation

l are respectively a material description and a light source, the diffuse light
component is calculated as:

Id = m.diffuse⊗ l.color ∗max(N · L, 0)

where the ⊗ symbol denotes piecewise vector multiply.
The max(N ·L, 0) term is often called “clamped cosine factor” or “lam-

bertian factor”. The dot product between N and L essentially computes the
cosine of the angle between the two vectors1, and in case of negative values
(that is, if the light source is in a position that can’t irradiate the surface)
the max function clamps the value to 0.

Specular Component

The specular and shininess material attributes, together with the L, N
and V vectors, are used to calculate the specular reflection component.

This computation is slightly more complex than the one of diffuse light,
because, as previously stated, depends on the direction of the viewer (V
vector).

If we consider the microscopic structure of the surface, we can say that
the specular reflectance comes from “tiny mirrors” oriented halfway between
L and V . The halfway vector H, of unitary length, that represents this
orientation, is consequently calculated like this:

H =
L+ V

||L+ V ||

1the dot product is defined as ||N ||||L||cosθ, and N and L have unitary length so the
dot product essentially computes the cosine of the angle θ formed by N and L

CHAPTER 2. THEORETICAL FOUNDATIONS 21

The angle between theN andH vectors, with a logic similar to the one of
the Lambertian term of the diffuse component equation, is used to modulate
the specular reflection, together with the shininess material attribute:

max(N ·H, 0)m.shininess

Introducing the RGB values relative to material and light color, we have
the final equation:

Is = m.specular ⊗ l.color ∗max(N ·H, 0)m.shininess

Light attenuation

If, as in most cases, the light source has some attenuation characteristics,
()Id + Is) must also be multiplied by an attenuationFactor.

Different attenuation functions can be used, but a popular one is

attenuationFactor =
1

constantAtt+ linearAtt ∗ d+ quadraticAtt ∗ d2

where constantAtt, linearAtt and quadraticAtt are light source at-
tributes and d is the distance between source and surface.

2.4.3 Ambient Lighting

Ia is generically derived by a global setting for the scene, a fixed amount
that gets multiplied by the material ambient color and added to the direct
light in the total illumination calculation.

Often, the ambient attribute is not specified in the material description,
and the diffuse attribute is used as fallback, representing in some way the
“base color” of the surface. Keeping this in mind, we can write the ambient
component equation as:

Ia = m.ambient⊗ l.color

2.4.4 Adding ambient obscurance to the model

After giving the details about how each of the three components Ia, Id, Is
is calculated, let’s get back to the big picture:

CHAPTER 2. THEORETICAL FOUNDATIONS 22

I = Ia + Id + Is

As we explained, ambient obscurance is related to ambient lighting, so
in its more correct formulation the AO factor (representing the occlusion of
the point we are shading) should modulate the ambient light (the Ia factor).
Consequently, we have

I = AO ∗ Ia + Id + Is

Sometimes (for example if the ambient occlusion is added as post-processing
on the fully lightened scene, meaning that the separated components aren’t
available), the AO factor is used to scale the total lighting, without distinc-
tion between direct and ambient light. We stick to the first, more appropri-
ate definition.

Chapter 3

Related works

Interactive global illumination is one of the “hot topics” in computer graph-
ics research, and an impressive number of related works have been published.
We suggest reading the 2012 survey [RDGK12] to get a generic overview on
the field.

Here, we restrict the scope to techniques most closely related to our own:
ambient occlusion/obscurance approximations suitable to real-time render-
ing that work in image space (also referred as screen space).

Even considering only this category of algorithms, a variety of approaches
exist. Some sources try to correlate, compare and evaluate such techniques,
and we suggest the interest reader to check [Aal] and [Gra13], two recent
thesis that both agree on the Alchemy algorithm being the state of the art.

We’ll briefly cover the more influential works in the following sections.

3.1 2005 - Dynamic Ambient Occlusion and Indi-

rect Lighting

In his seminal work [Bun05], Micheal Bunnell of NVIDIA corporation de-
scribes a technique that approximates polygon meshes as a set of surface
elements (discs) that can emit, transmit or reflect light and that can shadow
each other. He defines an approximation of ambient occlusion on the basis
of the calculated coverage between discs, and an approximation of indirect
lighting by estimating the disc-to-disc radiance transfer.

23

CHAPTER 3. RELATED WORKS 24

Figure 3.1: a polygonal mesh and its representation as disc-shaped elements,
from the original paper

Major drawbacks of this algorithm are the dependence on scene complex-
ity and the need to preprocess geometry, which has to be well tessellated
to give good results. This also implies that the technique is not suitable to
deformable objects.

It must be noted that this is not an image-space technique, but a geom-
etry approximation one. Anyway, we mention it because it has some way
inspired a number of subsequent works, including our own.

3.2 2007 - Hardware Accelerated Ambient Occlu-
sion Techniques on GPUs

In [SA07] Shanmugam and Arikan approximate ambient occlusion through
spherical proxies.

Their interesting idea is to approximately reconstruct the surface repre-
sented by a pixel using a sphere in world-space that roughly projects to that
pixel on the screen.

By using deferred rendering, a ND-buffer storing normals and depths is
created. From such information, each pixel can be mapped to a sample of
some surface in world-space, that can be considered as an occlusor to other
pixels.

The algorithm also uses a separate calculation (non screen-space) for
low-frequency occlusion due to distant occluders, and then combines the re-
sults.

CHAPTER 3. RELATED WORKS 25

Even if presenting original and interesting ideas, this technique is maybe
over-complicated and didn’t have much luck, being subsequently surpassed
in both quality and speed by simpler techniques.

3.3 2007 - CryEngine2 Screen Space Ambient Oc-

clusion

In [Mit07] the denomination “screen space ambient occlusion” appears for
the first time. Crytek implements in its CryEngine this technique, that
works by sampling the surrounding of a pixel and, on the basis of the z-
buffer, does depth comparisons.

Sample positions are distributed in a sphere around the pixel, and some
randomness is introduced by reflecting position vectors on a random plane
passing through the sphere origin.

The occlusion factor depends only on the depth difference between sam-
pled points and current point. This, combined with the simple distribution
of samples (around a sphere and not an hemisphere) causes some over-
darkening: even flat, not occluded areas get some samples considered as
occlusors (as you can see from the grey flat areas in figure 3.2), resulting in
self-occlusion.

Figure 3.2: ambient occlusion as calculated by CryEngine 2

CHAPTER 3. RELATED WORKS 26

3.4 2008 - StarCraft 2 Ambient Occlusion

Some improvements over the CryEngine approach are shown in [FM08].
Samples are offset in 3D space from the current point being computed,

and then projected back to screen space to sample the depth of the sample
location. Normals (this algorithm is based on deferred rendering too) are
used to flip the vectors that fall in the hemisphere below the current point,
avoiding the self-occlusion exhibited by the Crytek algorithm.

An occlusion function maps the relationship between the depth delta
(sample.depth− projectedSample.depth) and how much occlusion occurs.

A number of details are taken care of (sample randomization, filtering,
down-sampled calculation) to improve performances and obtain a produc-
tion ready solution.

Figure 3.3: StarCraft II SSAO, before filtering

3.5 2008 - Image-space horizon-based ambient oc-
clusion

The method shown in [BSD08] interprets the depth buffer as a height field
and works by performing a form of ray marching in screen space. It con-
siders the tallest occluder along each azimuthal direction, to determine the
visible horizon on the hemisphere around the current point. This assumes a

CHAPTER 3. RELATED WORKS 27

continuous depth buffer, so in cases like the one of figure 3.4 the occlusion
is not calculated correctly.

Figure 3.4: An example of discontinous depth buffer - image taken from
[Aal]. In a case like this, HBAO wouldn’t consider the unoccluded portion
of emisphere on the left of p, below the floating occluder

Some refinements of the method were later published, but anyway it
looks like the method is quite expensive compared to the quality it manages
to obtain.

3.6 2011 - Alchemy Screen-Space Ambient Obscu-
rance

Tha Alchemy SSAO algorithm, presented in [MOBH11], has been developed
with the goal of artistic expressiveness rather than physically grounded re-
alism.

The strength of Alchemy is in the way it derives its estimator: the chosen
falloff function manages to cancel some expensive operations while staying
meaningful. The obtained, highly efficient estimator is then applied to points
sampled in the hemisphere, as in some previous methods.

Alchemy features a number of artist-tweakable parameters and generally
gives very good quality results with high performances. Some improvements
and modifications of the algorithm are discussed in [MML12].

Chapter 4

SaSSAO: Solid Angle based
SSAO

In this chapter we are going to describe our technique from a theoretical
perspective.

Unfortunately, many aspects presented are closely related to the imple-
mentation and to generic rendering theory. So, we advise to

• ignore some possibly obscure details specific to our technique, and
revisit this chapter after reading the following one about the imple-
mentation

• refer to books such as [AMHH11] for the generic aspects we might
have overlooked (or just mentioned briefly)

Anyway, it’s worth briefly anticipating a few crucial things that can help
understanding:

• we refer to “camera space” and “screen space” coordinates of a point
to respectively identify

◦ its the 3D coordinates in the scene, relative to the camera position

◦ its 2D coordinates when it gets projected on the screen, in the
rendered frame

• in deferred rendering, the G-Buffer (geometry buffer) is a set of buffers
output by a “geometry pass” that saves information about the scene
to be later processed

28

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 29

• the depth buffer (or z-buffer) stores a depth value for each pixel of the
screen space: if a pair of screen-space coordinates x,y let you pin-point
a pixel on the screen, the z-buffer value for that pixel tells you how far
from the camera is the object that pixel belongs to

◦ from screen space coordinates and depth, it is possible to recon-
struct the camera space coordinates

• shaders are programs that are executed by the GPU and, depending
on their type, run in a certain stage of the rendering pipeline, accessing
different information and being able to do different operations. We use
vertex, fragment and geometry shaders.

Moving on to the actual description, we can split it into two main parts:

• a scheme for hemisphere partitioning into “solid-angle buckets”, and
an algorithm that identifies to which bucket a certain direction vector
belongs

• the obscurance estimation process, that essentially works by calculat-
ing the coverage of the hemisphere through sampling the G-Buffer and
performing a number of computations involving the buckets

4.1 Hemisphere Partitioning

We bring to image-space a scheme to discretise the sphere into solid angles
proposed in [KSMY07].

Let’s consider a unit sphere centered on the origin of a Euclidean space.
The origin divides each of the axes into two halves: positive and negative

semiaxis. Let’s refer to the slice of sphere delimited by the three positive
semiaxes, that is, the positive octant of the sphere (see fig. 4.1).

Let’s consider the x+ y + z = 1 plane and the equilateral triangle that
lies on it with vertices v0 = (1, 0, 0), v1 = (0, 1, 0), v0 = (0, 0, 1).

We split each of the −−→v0v1
−−→v0v2

−−→v1v2 edges into n equal units. For edge
−−→v0v1, we connect subdivisions between the other two edges with line segments
parallel to −−→v0v1. Then, we repeat the same process for the remaining two
edges, obtaining a tessellation of the original triangle into n2 triangles. The
process is illustrated by fig. 4.2

If we project onto the surface of the sphere the vertices of this tessellation,
by normalization, we get a partition of the octant into spherical triangles.

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 30

Figure 4.1: the surface above the positive octant of a sphere

Each of these spherical triangles represents a solid angle ω, associated
with the direction Θω passing through the triangle centroid.

Individual triangles are assigned unique identifiers, as shown in fig. 4.3.
Given an arbitrary direction Θ, we can identify the associated triangle

in constant time. This is how it’s done.

• we consider the unit vector along Θ and its intersection point pΘ with
the x+ y + z = 1 plane

• we find the intervals of −−→v0v1 and −−→v1v2 that pΘ lies into, restricting the
region to a parallelogram defined by the segments parallel to −−→v0v1 and
−−→v0v2

◦ x = npΘ, z = npΘ

⋄ this scales x and x from [0...1] to [0..n]

◦ xi = ⌊x⌋, zi = ⌊z⌋

⋄ this identifies the x and z intervals pΘ lies into

◦ ξΘ = zi(2n− zi) + 2xi

⋄ zi(2n− zi) calculates the identifier associated to the first tri-
angle of each row (for n = 4, it computes 0, 7, 12, 15)

⋄ 2xi adds the “horizontal” offset, so ξΘ locates the lower-left
half of the parallelogram containing pΘ

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 31

Figure 4.2: steps of triangle subdivision for n = 4

• we isolate the triangle testing if pΘ lies above or below the diagonal of
the located parallelogram1

◦ diag = (x− xi) + (z − zi)

⋄ diag will be ≤ 1 if pΘ lies above the diagonal, > 1 otherwise

◦ ξ′Θ = ξΘ + ⌊diag⌋

⋄ if above, we are in the right half of the parallelogram, so
we increment the triangle id2 adding 1, otherwise we already
have the triangle id as ξΘ (⌊diag⌋ will be 0)

This technique is more easily understood through a graphical example,
like the one shown by figure 4.4.

1beware: on the version of [KSMY07] we consulted, the formula was erroneously re-
ported as diag = (x− xi)(z − zi)

2on [KSMY07], this line is written in a code-like fashion as if(diag > 1)ξΘ ++

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 32

Figure 4.3: numeric identifiers for n = 4

4.1.1 Partitioning for the whole hemisphere

Of course, the same process can be applied for the other octants of the
sphere.

For the ambient obscurance calculation, we are interested only in direc-
tions associated with the hemisphere “surrounding” the normal of the point,
so we repeat the process for four octants, building a pyramid.

We’ve shown how for n subdivisions we get n2 triangles, so for four
octants we get 4n2 total triangles.

The triangle identifiers follow the pattern shown in fig. 4.3, but with
an additional offset added, depending on the slice of hemisphere they are
related: for example, the third slice will have triangle identifiers ranging
between 2n and 3n − 1.

The solid angle covering the full hemisphere is 2π, so the solid angle
associated with every “bucket” is

ω ≈
2π

4n2

The algorithm to find the bucket associated with any direction vector is
easily adapted: the signs of the vector coordinates indicate in which of the
four octants of the hemisphere we have to look.

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 33

Figure 4.4: steps of triangle identification by arbitrary direction

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 34

4.2 Ambient Obscurance calculation

On a higher level, our algorithm proceeds like this:

• in a first pass, the geometry shader computes an area value relative to
each triangle processed, and forwards it to the fragment shader, that
saves it into the G-Buffer together with normals and depths

• for each pixel, in the following pass, another fragment shader samples
the G-Buffer to calculate the AO

• the AO-buffer gets filtered to lower the noise caused by the sampling
and used to modulate the ambient factor in the final compositing of
the rendered image

Now let’s proceed with a detailed view of each phase.

4.2.1 Area Calculation

While the vertex shader operates on a per-vertex level, the geometry shader
can access whole primitives (in our implementation, we only use triangles).
So, for each triangle, the camera space position of its vertices is used as basis
to compute an area that will be used in the AO calculation later.

Let p0, p1, p2 be the camera space positions of the three vertices of each
triangle, from which we calculate the length of its sides, a, b, c:

a = length(p1 − p0)

b = length(p2− p1)

c = length(p0− p2)

Then, by the Heron formula, in which s is the semiperimeter of the
triangle, we can calculate the triangle area At:

s =
a+ b+ c

2

At =
√

s(s− a)(s − b)(s− c)

We can calculate additional quantities related to the triangle, such as
the area of the circumscribed circle Acct or the area of the inscribed circle
Aict.

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 35

radiuscct =
abc

4At

⇒ Acct = πradius2cct

radiusict =
2At

(a+ b+ c)
⇒ Aict = πradius2ict

Which area calculation use, and an additional areaMultiplier parame-
ter, will be configurable settings.

4.2.2 AO calculation

The second pass works in image space, accessing the G-Buffer created in
the first pass. We’ll talk about implementation details in the following
chapter, for now suffices to say that we can retrieve some geometry related
information from the G-Buffer according to a sampling pattern, and use it
in our process of calculating the ambient obscurance.

G-Buffer information

Let’s assume that we get values from the G-Buffer for a pixel P , at screen
coordinates P.x and P.y, by these functions:

• P.depth() - returns the depth of the geometry at P , from the z-buffer,
normalized to [0..1]

• P.normal() - returns the normal of the geometry surface at P

• P.csPos() - calculates the camera space position from P.x, P.y and
P.depth()

• P.area() - returns the area related to the triangle pixel P belongs,
calculated as described in 4.2.1

Sampling pattern

The selection of the screen space positions where to take samples for calcu-
lating the AO for point P is very important.

Basically, two categories of approaches are possible, both involving a
radius around P , samplingRadius, often scaled by P.depth(), that limits
the distance samples can be taken:

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 36

• “flat” sampling that locates points around P , in a circle of radius
samplingRadius, considering the bidimensional screen space coordi-
nates x, y of the pixel

• 3D sampling that consider the hemisphere around P.normal() hav-
ing radius samplingRadius and take points in the screen space area
delimited by such hemisphere

Perspective projection makes things a little complicated: when going
back to camera space, pixels selected with both approaches can result in
useless samples, related to points out of the area considered in the AO cal-
culation.

Anyway, randomization is a crucial aspect of every sampling technique
adopted. In fact, if we stick to a static, regular pattern, some banding
artefacts will appear in the calculated AO. By applying some form of ran-
domization, we avoid such artefacts, at the price of some high-frequency
noise that can be handled with filtering, as will be shown in 4.2.3.

A simple way to introduce randomization is using some form of rotation
dependent on a random value derived from the pixel coordinates:

• in flat sampling, a kernel of points randomly placeD around the center
P is rotated around P

• in 3D sampling, a kernel of vectors reaching random points into the
hemisphere is rotated using the normal of point P as rotation axis

We implemented both approaches (even with some variants) and left to
the user the option to select and evaluate them.

Solid Angle estimator

In [Bun05], scene geometry is approximated with oriented discs considered as
occluders to calculate per-vertex occlusion on the GPU, as briefly discussed
in 3.1. We somewhat take inspiration from the technique but bring it to the
image-space domain.

Let’s consider two pixels, P and S, that belong to two different triangles.

We want to estimate what solid angle, at pixel P , is covered by the sur-
face S belongs to.

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 37

Let d be the vector from camera space position of P to camera space
position of S:

d = S.csPos()− P.csPos()

Let d′ be its normalized version

d′ =
d

||d||

We can name θP the angle formed by d′ and P.normal() and θS the
angle formed by d′ and S.normal().

So, the dot product

d′ · P.normal()

is basically the cosine of θP , and similarly

−d′ · S.normal()

is the cosine of θS .

Figure 4.5 visualizes the involved entities.

Figure 4.5: the angles and vectors related to the solid angle approximation

A possible solid angle approximation is

c =
max(0, d′ · P.normal()) ∗ S.area()

d2

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 38

The key idea is that max(0, d′ · P.normal()) decreases the impact of
occluders that only block incident light at shallow angles (which is radio-
metrically correct).

Conversely, multiplying by the area related to the occlusor surface mod-
ulates the contribution according to the dimensions of the surface.

If we want also consider the orientation of the occlusor, we must intro-
duce θS into the equation. Ideally, if we consider a disc of area S.area() and
oriented according to S.normal(), its projected solid angle would be

solidAngleS =
S.area() cosθS

d2

This comes from the differential area being related to differential solid
angle (as viewed from a point P) by

dω =
dA cosθ

r2

where θ is the angle between the surface normal of dA and the vector to
P , and r is the distance from P to dA, as shown by figure 4.6.

Figure 4.6: differential solid angle and and differential area - image taken
from [PH10]

This formula can be understood intuitively:

• if dA is at distance 1 from P and it’s aligned exactly so that it is
perpendicular to dω, then dω = dA and cosθ = 1 , and he equation
holds

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 39

• as dA moves farther away from P , the r2 term increases and so diving
by it reduces accordingly dω

• as dA rotates so that it’s not aligned with the direction of dω, the cosθ
term decreases, reducing accordingly dω

Unfortunately, applying this formula with screen-space estimators results
in horrible artefacts, because often the portion of an object visible to the
camera is not the same that is oriented towards the surface we are calculating
the occlusion for, as show by fig. 4.7.

Figure 4.7: no occlusion would be calculated if applying the basic solid angle
formula calculation

A possible approximate solution can be flipping the normal in such cases:
what we are interested in, regarding solid angle coverage, is after all that
there is some geometry occluding light, not if it is oriented towards the
occluded surface or not.

In terms of calculations, instead of clamping to 0 the cosine value, we
can take its absolute value: so, if the θS angle falls into the 90..180 degrees
range, the negative cosine values relative to S.normal() becomes a positive
value for −S.normal().

solidAngle′S = S.area() abs(d′ · S.normal())

Modifying our approximation according to this factor, we get:

c′ =
max(0, d′ · P.normal()) ∗ abs(d′ · S.normal()) ∗ S.area()

d2

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 40

Anyway, our implementation allows changing the solid angle approxima-
tion formula, even at runtime, to easily test different approaches.

Falloff function

A falloff function relative to the occluding geometry distance allows to
smooth out the obscurance contribution with distance.

We adopt the falloff function proposed by the Alchemy SSAO algorithm
in [MOBH11].

g(t) = u t max(u, t)−2

where

• u is samplingRadius ∗ k , with k ≈ 0.01 (user modifiable)

• t is the distance between P and the occluding geometry

AO Computation

Let’s call P the current pixel (that is, the pixel the fragment shader is
running for).

P.depth() is read and used to check if the pixel is part of the geometry
or the background. If it’s part of the background, there’s no processing
to be done. P.normal() is retrieved and used, together with P.depth(), to
calculate the screen space position of the samples to be taken.

Let k be the number of samples to take, and Si, i ∈ [0..k − 1], the ith
sample pixel position in screen space, located depending on the adopted
sampling pattern, as discussed in 4.2.2.

Let triangleDivs be the triangle subdivision factor, that defines how
the hemisphere is discretized. From discretization of the hemisphere: from
this factor (as explained in 4.1.1), we derive hemisphereBuckets, that is
4triangleDivs2 and bucketSolidAngle, that is 2π

hemisphereBuckets
.

triangleDivs hemisphereBuckets bucketSolidAngle

2 16 0,39270
3 36 0,01091
4 64 0,00017

So, for each Si, the following steps are performed:

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 41

• Si.depth() is read. If the pixel is part of the background, the processing
skips to the next sample.

• Si.csPos() is calculated, allowing to compute:

◦ sampleDir, the vector that goes from P.csPos() to Si.csPos()

◦ its length, sampleDist, that is the actual distance between P.csPos()
and Si.csPos()

⋄ this distance, due to perspective projection, can be signifi-
cantly greater than the screen space distance between P and
Si

• if sampleDist is greater than the maxDist parameter, the sampled
point is too distant to be taken into account for the AO calculation,
and so processing skips to the next sample

• otherwise, by the process illustrated in 4.1 (adapted to work for the
four octants of the hemisphere as discussed in 4.1.1), the triangle id
sampleDir falls in is found. So, let ti be the triangle id found for Si.

• we check if the bucket ti is already fully covered (meaning that we
already know that the direction the sample belongs is already estab-
lished as occluded)

◦ if it is, we skip to the next sample

◦ otherwise, we compute an estimate of the covered solid angle as
described in 4.2.2, and we add it to the current coverage value
for the bucket

After processing all the samples, we have an estimate of the visibility
around the currently processing point in the form of the coverage values for
all the buckets of our discretization. We know that the solid angle for the
full hemisphere is 2π, so we sum the cover of all the buckets and divide it
by 2π to get a global occlusion value.

Of course nothing can guarantee that by random sampling we get sam-
ples on every near-field occluder, but this is true for every SSAO technique.

The immediate advantage of our technique is that we avoid over-occlusion
caused by multiple occluders covering each other but covering from the same
direction.

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 42

4.2.3 AO filtering

Random sampling avoids banding issues, but introduces high frequency
noise. This could be removed with a basic Gaussian blur:

Ifiltered(x) =
∑

xi∈Ω

I(xi)gs(‖xi − x‖)

• Ifiltered is the filtered image;

• I is the original input image to be filtered;

• x are the coordinates of the current pixel to be filtered;

• Ω is the “window” of pixels centered in x;

• gs typically a Gaussian function, the spatial kernel for smoothing dif-
ferences in coordinates

The problem with using Gaussian blur with AO is that it would also
cause some shadow bleeding between surfaces at different depths or orien-
tation.

We have normals and depths at our disposal, so a more intelligent filter-
ing can be done.

A popular choice adopted by SSAO techniques is bilateral filtering.
Bilateral filtering adds another function, the “range kernel”, that weights
the contribution of pixels by according to an additional criterion other than
the distance between x and xi.

Ifiltered(x) =

∑

xi∈Ω
I(xi)fr(‖I(xi)− I(x)‖)gs(‖xi − x‖)

∑

xi∈Ω
fr(‖I(xi)− I(x)‖)gs(‖xi − x‖)

• fr is the range kernel for smoothing differences in intensities

Anyway, we decided to use a filtering function defined in [Gra13], a box
filter with bilateral weights based on normal and depth differences, and not
Gaussian weights:

Ifiltered(x) =

∑

xi∈Ω
color(xi)w(x, xi)

∑

xi∈Ω
w(x, xi)

where

CHAPTER 4. SASSAO: SOLID ANGLE BASED SSAO 43

w(x, xi) = wnormal(x, xi)wdepth(x, xi)

wnormal(x, xi) =

(

nx · nxi
+ 1

2

)kn

wdepth(x, xi) =

(

1

1 + |dx − dxi
|

)kd

kn and kd are two constants that can be tuned to alter the contribution
of the normal/depth discriminators in the weight calculation. Our imple-
mentation allows to change at runtime kn, kd and the size of Ω.

Figure 4.8: an example of ambient obscurance before and after filtering

Chapter 5

SaSSAO implementation

We use C++11 and modern OpenGL to implement our technique in a cus-
tom rendering sandbox named YARS (for “Yet Another Rendering Sand-
box”).

We briefly cover YARS features and then move to discuss the implemen-
tation of SaSSAO, giving some information about the relevant techniques,
such as deferred rendering, and the needed OpenGL features.

We show the shader programs and framebuffers used in our pipeline
and their interactions, building the Blinn-Phong/AO shading model by a
geometry pass, an AO evaluation pass, and a filtering/compositing pass.

5.1 OpenGL and GLSL

OpenGL is not properly a software library, it is an API for which most
graphics card drivers offer an implementation, allowing developers to ex-
ploit the GPU hardware capabilities in a standardized way.

Modern OpenGL works primarily through GLSL shaders, programs
written into a shading language (GLSL stands for OpenGLShading Language).
that get compiled by OpenGL implementation and run on the GPU, plugged
in the rendering pipeline.

GLSL is C-like and “computer-graphics-friendly”, implementing a num-
ber of operation very common in computer graphics, such as vector/ma-
trix operations and trigonometric functions. GLSL shaders are compiled by

44

CHAPTER 5. SASSAO IMPLEMENTATION 45

OpenGL into microcode suitable to be run on the GPU.

The OpenGL 4.3 pipeline is vastly programmable, allowing to plug-in
into the rendering process many custom stages (implemented by means of
GLSL shaders). Figure 5.1 shows the pipeline structure and positioning of
the programmable stages. An OpenGL shader program must contain at
least vertex and fragment shader.

Figure 5.1: an overview of the OpenGL pipeline: blue boxes are pro-
grammable stages

We will only use vertex, geometry and fragment shaders.

In oversimplified terms, an OpenGL renderer:

CHAPTER 5. SASSAO IMPLEMENTATION 46

• loads some resources on the GPU (vertex buffers, textures and texture
coordinates...) and keeps some handles to such resources

• loads and compiles some shader programs, also identified by some
handles

• iteratively, tells the GPU to “draw” somewhere something in some
way, where

◦ “somewhere” is the destination of the call (e.g. the default frame-
buffer shown on the screen, or an image buffer to be further pro-
cessed)

◦ “something” is related to some resource handles to process (e.g.
an identifier that refers to the buffer containing the vertex co-
ordinates for a cube, and another identifier that represents the
texture that will be applied to the faces of such cube)

◦ “some way” is related to the shader program to use, that will
process the data, eventually rendering the textured cube (or doing
something completely different: it’s up to the shader)

CHAPTER 5. SASSAO IMPLEMENTATION 47

5.2 YARS

YARS has been developed to provide a basic but effective OpenGL testing
environment, taking care of essential features such as switchable renderers,
scene management and a GUI to adjust parameters.

A complete description of YARS would bring the discussion away from
the implementation of SaSSAO itself, so we only list its main characteristics
and features, and give an idea about its architecture, avoiding unnecessary
details even if they took a fair amount of programming work.

5.2.1 Supporting libraries

To build a rendering sandbox from the ground up, other than a graphics
API such as OpenGL, a number of libraries are mandatory to shorten the
development time and stay focused on the primary task.
We limit ourselves to listing the used libraries and their purposes:

• GLEW: OpenGL Extension Wrangler Library, exposes to the applica-
tion the OpenGL features available on the system

• GLFW: portable windowing with OpenGL support, and basic input
management

• GLM: GL Mathematics, providing a C++ implementation of most
mathematical functions offered by GLSL, and additional useful math-
related features

• DevIL: image loading and handling, useful to handle textures and for
other image-related tasks, such as saving a screen-shot

• Assimp: Open Asset Import Library, to load 3D model formats

• AntTweakBar: simple and lightweight GUI for graphic applications

5.2.2 Architecture

The include dependency diagram in figure 5.2 can give a partial idea of
the sandbox architecture. It is relatively simple but easily extendable by
plugging new renderers and shaders, and maybe new abstractions for other
OpenGL features.

CHAPTER 5. SASSAO IMPLEMENTATION 48

Figure 5.2: some of the files composing YARS and their include dependencies

Note that the input handling, scene management and actual rendering
are somewhat decoupled: in the rendering loop, input is forwarded to the
current scene, that adjusts its elements according to what is defined in its
logic, and after that the current renderer actually renders the new state of
the scene.
So, you can define new scene behaviours by inheriting from Scene and over-
riding the update() method, much likely you can implement a new renderer
by inheriting from Renderer and providing a new render() method. Some
classes related to shaders handling are also provided, and ShaderProgram
can be used as it is or extended to provide additional helper functions to
simplify shader communication, as we’ll see in the following paragraphs.

5.2.3 Scene Management

A YARS scene essentially consists of a SceneNode tree. Multiple scenes can
be loaded in memory at the same time and the GUI allows to select the

CHAPTER 5. SASSAO IMPLEMENTATION 49

current scene (that gets rendered to the screen).

SceneNodes are scene elements that, through the GUI, can be added,
removed, transformed (position, scale, orientation) and assigned as child of
another node.

Scenes can be saved to simple .json files describing the elements hierar-
chy and attributes, and then loaded at a later time.

There are three main types of SceneNodes:

• AssetNodes, that have some renderable asset attached to them (tex-
tured models, loaded from supported file formats)

• LightNodes, that represent light sources (color, type, falloff character-
istics)

• CameraNodes, that model cameras (field of view, clip planes...)

A minimal support for animated AssetNodes and for camera flythroughs
is provided. Mouse and keyboard input handles camera movement and nodes
positioning and transformation.

5.2.4 Rendering

Multiple renderers can be initialized and switched at runtime, simplifying
testing. The currently active renderer exposes its configurable parameters
through the GUI.

Basically a renderer can access the current scene and instantiate one or
more shader programs and buffers to finally build the framebuffer that will
be shown on screen.

The basic implementation objective for the sandbox was fully supporting
the Sponza model by Crytek1, one of the most popularly used in global
illumination demos. This guided the rendering development into supporting
some features and characteristics, such as:

• texture mapping (material diffuse color taken from image maps)

• specular mapping (material specular color taken from image maps)

1at the time of writing, such model is available for download at
http://www.crytek.com/cryengine/cryengine3/downloads

http://www.crytek.com/cryengine/cryengine3/downloads

CHAPTER 5. SASSAO IMPLEMENTATION 50

• normal mapping (surface normals taken from image maps)

• alpha masking (image maps define the transparency of some geometry)

Then, the three conventional OpenGL types of light sources, as modeled
by the LightNodes (directional, point and spot), are supported by specific
shading functions.

A basic forward renderer that processes all the scene assets as seen from
the current camera, and calculates scene lighting by iterating through the
light sources, is the base upon more complicated renderers can be built, as
we’ll explain.

5.2.5 Shaders

GLSL shaders are handled through three YARS classes:

• Shader: an abstraction on a sigle shader, specifying its type (vertex,
geometry, fragment) and source code, and handling its compilation

• ShaderSubroutine: an abstraction on the shader subroutines OpenGL
feature, allowing to switch shader functions implementation at runtime
(a function pointer like mechanism)

• ShaderProgram: an abstraction on a full shader program, composed of
more Shader objects linked together and exposing functions to access
the uniforms, UBO and texture bindings of the shader program

Even if using instances of the generic ShaderProgram class is possible,
the most straightforward way to handle a shader program is defining a new
class that inherits from ShaderProgram and builds upon it.

One of the ShaderProgram constructors allows to just specify the text files
containing the shader code for the desired stages (for example: geometry-
Pass.vert, geometryPass.geom, and geometryPass.frag, for vertex, geometry
and fragment shader). Such constructor reads, compiles and links together
the shaders, building ready-to-use shader program.

Each ShaderProgram-inherited class retrieves and stores the handles to
uniforms and UBOs and binds the texture samplers to some texture units:
in practice, it does all the necessary operations to later allow straightfor-
ward and efficient communication between the host application and shader
program running on the GPU.

CHAPTER 5. SASSAO IMPLEMENTATION 51

We also implemented in YARS a couple of functionalities on top of the
standard OpenGL features. Detailing each one would take too much space,
but a briefly mention is necessary to the reader to understand the provided
shader code and the sandbox behaviour:

• include mechanism: to better factorize the shader code, factorizing
some shared functions in separate files was needed. A simple “#in-
clude”, C-like mechanism was implemented in the text file reading
routine called by the ShaderProgram constructor

• editable compile-time constants: it might be desired to change some
values from the host application that will stay constant after shader
initialization, and so do not need to be declared as uniform. We expose
such values to the host application an trigger shader recompilation on
change

• shader subroutine handling/emulation: OpenGL 4.3 offers a mecha-
nism to easily select different implementation of a shader function - we
wrap it to allow easy implementation selection from the host applica-
tion and we implement a switch-based replacement, mostly to evaluate
the performances of switch vs subroutine selection

Uniforms and Uniform Buffer Objects

Efficient communication between host application and shader programs is a
key point of OpenGL programming.

The basic way the host application communicates with shader program
is by setting Uniform Variables. Every shader can define such variables,
and the host application can query for their locations and manipulate their
values. Then, the shader program can access (read-only) such values. We
use Uniform Variables for shader-specific parameters.

Additionally, we useUniform Buffer Objects (UBOs). They allow ac-
cess from multiple shaders and offer a more efficient way to set large chunks
of data with a single operation. They also allow to quickly change between
sets of uniforms. We use UBOs to set into shaders the model/view/projec-
tion matrices (and some more), to keep material descriptions on the GPU
(switchable sets of uniforms), and to efficiently update the light sources def-
initions. In YARS, the class SharedShaderData handles the UBOs.

CHAPTER 5. SASSAO IMPLEMENTATION 52

It’s imperative to understand how data flows between the shader stages
and what data is accessible by each stage. Also, is important to do compu-
tations in the right place.

For example, let’s consider lighting. We do lighting in camera space.
This means that light sources position must be transformed from
world space to camera space, essentially multiplying the LightNodes
world space information by the view matrix.
We could upload world space light coordinates as they are, and then
multiply them in the fragment shader, because it’s there that we
calculate lighting and we need them. Unfortunately, that would
mean that such multiplication would be performed for each fragment,
thousand of times - something that is absolutely useless: you can
multiply once in the application and upload the already transformed
coordinates to the UBO. Anyway, it must also be noted that even
if this principle is generally valid, it’s sometimes possible, due to
hardware optimizations, that doing some operations multiple times
on the GPU is still faster than doing them just once on the CPU
side.

5.3 Deferred Shading

SaSSAO implementation, as it’s common for SSAO techniques, is based on
deferred shading.

Deferred shading gets its name from the fact that the first rendering
pass (often called geometry pass) doesn’t perform shading, that is instead
“deferred” to a second pass.
The first pass renders to a G-buffer (for “geometry buffer”), that consists
of a number of textures that will store the information needed for later pro-
cessing.

An modern GPU feature that is commonly used to build the G-buffer
is MRT rendering. MRT stands for Multiple Render Target, and allows
having multiple outputs in the fragment shader: in a single geometry pass,
all the textures of the G-Buffer can be filled with color data representing the
information designated to be stored. In the past, that would have required
multiple passes, causing inefficiency.

CHAPTER 5. SASSAO IMPLEMENTATION 53

After rendering to the G-buffer textures, the common practice is switch-
ing to another shader program and rendering as geometry a full-screen quad :
in such shaders, using texture sampling on the G-buffer, the information
needed for lighting or other processing is accessed.

Deferred rendering techniques have both advantages and disadvantages:
the main advantage is the ability to decouple the geometry processing from
the shading calculation, that usually is the most computationally heavy
part of the process. Some disadvantages are the difficulties in handling
semi-transparent objects, or using different shading functions for different
materials. More low-level problems are the lack of hardware anti-aliasing
and the high memory bandwidth requirements. Anyway, these in many
cases are a reasonable price to pay for the many scree-space processing pos-
sibilities made possible by the G-buffer. Hybrid approaches are also possible,
in which for example semi-transparent geometry is rendered on top with a
separated forward pass.

We ignore all these “advanced” issues and focus on flexibility and some
degree of performance.

The MrtBuffer and FullScreenQuad classes, in YARS, support these tech-
niques.

5.4 SaSSAO rendering pipeline

The SaSSAO rendering pipeline is implemented by the SaAoRenderer class.
The include dependecy graph shown by figure 5.3 gives a glimpse about the
structure of the renderer implementation, excluding the GLSL shaders.

Let’s recap the essential implementation information presented until
here, before moving to showing the actual pipeline elements and organi-
zation.

• we have loaded resources (geometry descriptions, textures, materials)
on the GPU

• we have handles to such resources in AssetNodes, organized in a hier-
archy, that is the SceneNode tree of the currently active Scene

• we have an active CameraNode that defines the view that will be ren-
dered by the current Renderer

CHAPTER 5. SASSAO IMPLEMENTATION 54

Figure 5.3: some of the files composing YARS and their include dependencies

• we update the active Scene according to user input

• we send the needed information to shader programs through uniforms
and UBOs

◦ something is updated only occasionally, something every frame

The SaAoRenderer pipeline elements are three instances of classes inher-
iting from ShaderProgram, and two instances of MrtBuffer:

• programs::

◦ SaAoGeometryPassShader geometryPassShader

◦ SaAoProcessingPassShader processingPassShader

◦ SaAoFilteringPassShader filteringPassShader

• buffers:

◦ MrtBuffer gBuffer

◦ MrtBuffer aoBuffer

All these elements are initialized by SaAoRenderer. The three Shader-
Programs are connected to the SharedShaderData class handing the UBOs.

The pipeline involves three passes working on these building blocks, es-
sentially with this logic, that can better be understood by also looking at
the diagram in figure 5.4:

• first pass (geometry pass)

CHAPTER 5. SASSAO IMPLEMENTATION 55

Figure 5.4: an overview of our rendering pipeline

◦ gBuffer is set as current rendering target

◦ geometryPassShader is set as the active shader

◦ all the current Scene geometry is rendered by issuing draw calls
for the AssetNodes

⋄ this essentially builds the G-buffer, preparing color/normal/depth
textures for the following stages

• second pass (processing pass)

◦ gBuffer textures are bound to be used as input data

◦ aoBuffer is set as current rendering target

◦ processingPassShader is set as the active shader

◦ a full-screen quad is rendered

⋄ this causes the ambient obscurance calculation to be esti-
mated (by sampling gBuffer) and written to aoBuffer

CHAPTER 5. SASSAO IMPLEMENTATION 56

• third pass (filtering/compositing pass)

◦ both gBuffer and aoBuffer textures are bound to be used as input
data

◦ the default framebuffer (shown on-screen) is set as current ren-
dering target

◦ filteringPassShader is set as the active shader

◦ a full-screen quad is rendered

⋄ the aoBuffer gets filtered to remove noise

⋄ the filtered aoBuffer value modulates the ambient light factor

⋄ the modulated ambient light factor gets added to the direct
lighting of the scene, calculated from gBuffer, compositing
the final image

Let’s give some details about the renderer initialization and each phase
of the process.

5.4.1 Initialization

The renderer initialization consists in the setup of the two MrtBuffer in-
stances, and of the three ShaderPrograms.

Thanks to our infrastructure, most of the OpenGL work is abstracted
by the MrtBuffer and ShaderProgram classes.

The MrtBuffer constructor takes the number and type of the desired
render targets, and the init() method actually allocates appropriate textures
into the GPU memory and binds them to a framebuffer object, an OpenGL
abstraction that specifies a buffer that can be target of drawing operations.

Such buffers can be bound for reading or writing by the current shader
program, and so can be used to transfer data between different rendering
passes.

YARS automatically re-initializes the MrtBuffer in two cases:

• the window size changes, and so new textures of appropriate size must
replace the old ones

• the user changes the texture storage type (this is allowed through the
GUI), something that can be useful to do at runtime while testing and
profiling

CHAPTER 5. SASSAO IMPLEMENTATION 57

◦ “wider” data types use more memory (and so, more bandwidth)
but allow more quality: for example, you can have configure the
depth buffer to use 16bits or 32bits for storing the depth of each
pixel, on the basis of the depth range and precision you need to
handle

Textures typically store four values for each pixel, referred interchange-
ably as RGBA or XYZW according to the usage. To store depth information,
specific types must be used.

The gBuffer instance has three color targets (diffuse, specular, normal)
and a depth target, and is structured like this:

• diffuse

◦ RGB: the diffuse color RGB values, coming from a texture or
material description

◦ A: not used

• specular

◦ RGB: the specular color RGB values

◦ A: shininess

• normal

◦ normal.XYZ: the normal vector at the pixel (considering normal-
mapping)

◦ W: the area related to the triangle the pixel belongs to, calculated
in the geometry shader

• depth: storing the depth of each pixel, and handled automatically by
OpenGL

The aoBuffer is much simpler, only containing a single target of a special
type of texture with a single component (the RED component)

• ao.R: the ambient obscurance level for the pixel (ranging between 0 -
totally occluded - and 1 - unoccluded)

Regarding the ShaderPrograms, they are so structured in terms of stages
and main files loaded (we skip the details about the subdivision of shader
code into different teext files that get “included”):

CHAPTER 5. SASSAO IMPLEMENTATION 58

• SaAoGeometryPassShader geometryPassShader

◦ vertex: deferred.vert

◦ geometry: saao geometryPass.geom

◦ fragment: saao geometryPass.frag

• SaAoProcessingPassShader processingPassShader

◦ vertex: deferred fullscreenquad.vert

◦ fragment: saao processingPass.frag

• SaAoFilteringPassShader filteringPassShader

◦ vertex: deferred fullscreenquad.vert

◦ fragment: saao filteringPass.frag

5.4.2 Geometry Pass

On the CPU side, the geometry pass is performed by this chunk of code:

gBuffer.bindForWriting();
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glEnable(GL_DEPTH_TEST);

geometryPassShader->use();
renderSceneGeometry(scene);
gBuffer.unbind();

Let’s repeat the pass overview adding some detail for each step:

• gBuffer is set as current rendering target

◦ gBuffer.bindForWriting() sets gBuffer as target of the following
draw calls. It’s cleared to black, and the depth test (an OpenGL
feature needed to be able to draw geometry in arbitrary order
without risking of drawing a far object in front of a near one), is
enabled

• geometryPassShader is set as the active shader

◦ geometryPassShader->use() activates the geometryPassShader, mean-
ing that the following draw calls will be processed by such pro-
gram on the GPU

CHAPTER 5. SASSAO IMPLEMENTATION 59

• all the current Scene geometry is rendered by issuing draw calls for
the AssetNodes

◦ renderSceneGeometry(scene) traverses the scene graph and does
render calls for every AssetNode in the scene, binding the ap-
propriate textures and materials. Also, it uploads to the shader
UBOs the shared data, including the transformation matrices and
light sources description

On the GPU side, the draw calls will cause rendering to the G-Buffer,
handling normal mapping, transparent geometry, texture mapping and al-
pha masking. 2

Figure 5.5 shows an example of the output of this pass.

Figure 5.5: the G-Buffer after the geometry pass

2these operations are out of the scope of our specific techniques and so we don’t discuss
them

CHAPTER 5. SASSAO IMPLEMENTATION 60

5.4.3 Obscurance Processing Pass

This is the most complex and performance critical pass.

glDisable(GL_DEPTH_TEST);

gBuffer.bindForReadingAsTextures();
aoBuffer.bindForWriting();

glClearColor(0.0, 0.0, 0.0, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);

processingPassShader->use();

quad->draw();
aoBuffer.unbind();

In the host application, the code is straightforward: after disabling the
depth test, (who doesn’t make any sense when drawing a single full screen
quad as we are in the second and third pass), we bind gBuffer for reading,
meaning that we can sample its textures from the active shader. Then, we
set aoBuffer as rendering target, enable the processingPassShader shader, and
draw a quad.

When drawing a quad, we basically just use the fragment shader to do
any kind of full screen processing. In this case, we want to fill the aoBuffer,
that will contain our obscurance estimate.

On the GPU side, the fragment shader implements all the steps of the
technique described in chapter 4, and the interested reader can easily un-
derstand the shader code by referring to such chapter.

Figure 5.6 shows an example of aoBuffer after the execution of the pass.

5.4.4 Filtering/Compositing Pass

This pass is simple but important: as we discussed previously, high fre-
quency noise is the best we can expect in aoBuffer (the worse would be
banding artefacts or other artefacts related to regular sampling) without
using a very high number of samples.

A filtering pass on aoBuffer can definitely improve the quality of the re-
sult, removing or at least reducing such noise and giving ambient obscurance
a smoother look. Also, in this step we have to finally render the framebuffer,

CHAPTER 5. SASSAO IMPLEMENTATION 61

Figure 5.6: the AO-Buffer after the processing pass

computing the direct lighting and adding the ambient lighting (modulated
by the obscurance).

const glm::vec3& bg = scene.getBackgroundColor();
setBackgroundColor(bg);
glClearColor(bg.r, bg.g, bg.b, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);

aoBuffer.bindForReadingAsTextures();
filteringPassShader->use();
quad->draw();

The framebuffer is cleared with the scene background color. In this pass
we need to read both MrtBuffers: gBuffer is already bound from the previous
pass, and we bind aoBuffer too.

Then, the filteringPassShader is activated and a full screen quad is drawn,
as in the previous pass.

This time, the fragment shader is relatively simple, if we skip the details
about standard direct lighting.

• direct lighting is calculated, by fetching from gBuffer diffuse color,
specular color/shininess and normal value. The eye vector is derived

CHAPTER 5. SASSAO IMPLEMENTATION 62

from the camera space position, that itself is derived by the pixel
coordinates and depth

• the filtered ambient obscurance value for the pixel is calculated by
applying the bilateral filtering process discussed in 4.2.3 to aoBuffer
and then used to modulate the ambient light

• direct light and ambient light are combined together and written to
the framebuffer

So, this fragment shader essentially implements the modified Blinn-
Phong shading equation discussed in 2.4.4:

I = AO ∗ Ia + Id + Is

Figure 5.7 shows the final compositing of the example rendering used in
the previous paragraphs. You might also want to revisit figure 1.3, shown
in the introduction, to better appreciate how the different components are
blended together.

Figure 5.7: the framebuffer, after the compositing pass. The scene has low
direct lighting and high ambient light to better show the ambient obscurance
effect

CHAPTER 5. SASSAO IMPLEMENTATION 63

5.5 Parameters and performance

The quality and performance of the technique vary sensibly according to a
number of parameters (that complicate testing and comparing the technique
to other approaches). All these parameters are configurable through the
YARS GUI to have instant visual feedback.

5.5.1 aoMultiplier

The aoMultiplier is a multiplicative factor applied to the filtered obscurance
value, before modulating the ambient light. So, adjusting the value can
attenuate or strengthen the ambient obscurance effect.

5.5.2 Number of Samples

The samplesNo parameter adjusts the number of samples taken in the sam-
pling area. Of course, more samples mean more quality, but also more cal-
culations and texture fetches, so this parameter has a dramatic impact on
how the technique behaves in terms of quality and performance. A high
number of texture fetches can quickly degrade performances.

You can think about samplesNo as the image-space counterpart to the
number of rays shot in ray-traced ambient occlusion.

5.5.3 Number of triangle buckets

The triangleDivs parameter, that can be set to 2, 3 or 4, defines the level
of precision we can have when classifying occluders directions.

We have discussed the details about the hemisphere partitioning scheme
in 4.1, but as a quick reminder, you get the hemisphere partitioned in
4 ∗ triangleDivs2 buckets.

More buckets generally allow more precision in classifying occluders di-
rection, but another factor must be taken into account: we cap the possible
occlusion brought by a sample to the solid angle of a bucket, so having more
buckets also means that each sample can bring less coverage. This implies
that the number of buckets should be somewhat related to the number of
samples: taking few samples with many buckets won’t work well, catching

CHAPTER 5. SASSAO IMPLEMENTATION 64

very low coverage and so very low obscurance.

Even if the computational complexity of finding the bucket is the same
independently on triangleDivs, an higher number of buckets implies larger
arrays to keep the values (and so, less cache coherence) and longer loops, so
generally a higher triangleDivs impacts negatively performances.

5.5.4 Sampling Pattern

As discussed in 4.2.2, we implemented two samples positioning schemes,

• flat: samples in a circle around the current pixel

• hemisphere: samples in a hemisphere around the current pixel, ori-
ented according to its normal

In both case, some randomization is needed to avoid artefacts. We tried
different approaches, and ended up generating a random value according to
a popular GLSL one-liner that works well in practice:

float rand(const in vec2 co){
return fract(sin(dot(co.xy, vec2(12.9898,78.233))) *

43758.5453);
}

According to the pixel position on screen space, a random value is gen-
erated. Such value is used to rotate a pre-calculated set of displacement
vectors that also get scaled according to the sampling radius.

The hemisphere sampling is more computationally heavy than the flat,
because sampling vectors must be transformed to the tangent space of the
current point, according to its position and normal.

5.5.5 Sampling Radius

This is the radius of the circle (for flat sampling) or sphere (for hemisphere
sampling) into which sample points are taken (in camera space). So, posi-
tioning of samples varies according to the depth of the pixel, as it makes
sense to cover the same actual distance in the scene.

Adjusting samplingRadius (and the maxDistance we’ll discuss in the
next paragraph) changes the range in which we take account for occluding
geometry. So, we’d like a reasonably large radius to get samples on more

CHAPTER 5. SASSAO IMPLEMENTATION 65

distant geometry: a very short radius would result in very localized dark-
ened areas and not in soft diffuse shadows.

Unfortunately the samplingRadius has a significant impact on perfor-
mances, because the texture fetches are related to cache efficiency.

As illustrated in [Dog12], the texture cache exploits the heavy reuse be-
tween neighboring pixels, so sampling a close fragment will often result in a
cache hit, while fetching values for a distant fragment could end up being a
much more expensive operation.

Note: the samples aren’t taken at exactly samplingRadius distance
(that would cause artefacts), but at random distances between ǫ and samplingRadius.

5.5.6 Max Distance

The sampling scheme does the best that can in placing the sample points
“near” the current point, according to the samplingRadius but, due to
perspective projection, geometry much more distant than expected can be
found when actually sampling the point. Unfortunately, this can’t be know
before sampling at least the depth of the sample pixel, from which the cam-
era space position is reconstructed.

After reconstructing such position, its distance with the camera position
of the current point is evaluated.

If such distance is greater than maxDistance, the sample is no further
processed, because is assumed to be too distant to bring occlusion.

Setting a high maxDistance can lower performance, because more dis-
tant samples are taken into account and calculated, even if they result in
giving no contribution to the obscurance. On the other hand, it should al-
ways be greater or equal than the samplingRadius parameter, or we would
generate sample positions that would be discarded in any case, and that
doesn’t make sense. A rule of thumb could be setting maxDistance to
twice the value of samplingRadius.

5.5.7 Angle Bias

The angleBias parameter, that often appears in SSAO techniques, is used
to limit the self-occlusion and the artefacts due to geometry almost co-planar

CHAPTER 5. SASSAO IMPLEMENTATION 66

with the one of the current point. If the cosine of the angle between the cur-
rent point normal and the direction to the occluder is less than angleBias,
the sample is ignored.

5.6 Adding indirect illumination

We didn’t have the time to adequately explore screen space indirect lighting,
but we did a quick experiment by modifying our pipeline to achieve some
visually pleasing color bleeding effects.

The core idea (also exploited in, among others, [Bun05], [SHR10], [RGS09])
is that occluding geometry is also a source of diffuse indirect light, and that
knowing its position, orientation and direct diffuse lighting, we can estimate
a form of radiance transfer from the occluding geometry to the current point.

Of course, the scope of the effect is limited to light coming from geome-
try in the samplingRadius range.

Our approximation, based on the differential element to differential el-
ement form factor formula, and using the notation and elements already
presented in chapter 4.2.2 by fig. 4.5, shown again for reader convenience
here as fig. 5.8, is

Figure 5.8: the angles and vectors related to the form factor approximation

ffS−>P =
cosθP cosθS

πr2
AS

5.6.1 Pipeline modification

The diagram in figure 5.9 shows the modified pipeline.

CHAPTER 5. SASSAO IMPLEMENTATION 67

Figure 5.9: an overview of our rendering pipeline modified to also approxi-
mate some indirect lighting

We don’t defer direct lighting: we calculate it in the geometry pass, in a
forward-rendering fashion, but save it in gBuffer, substituting the specular
data (that is not needed any more in later passes).

Having such data in gBuffer allows us to sample the direct (unoccluded)
lighting at the same time when we do sampling to calculate the ambient
obscurance, so the performance impact of the additional calculations is very
limited.

The aoBuffer, renamed aoIlBuffer, doesn’t store only the occlusion value
in a single-color texture. A full RGBA texture is used, with the indirect light
color in the RGB components and the obscurance values in the A component.

In the filtering pass, the indirect lights gets filtered together with the
obscurance value, resulting in smooth color bleeding, again without signifi-
cant performance loss.

CHAPTER 5. SASSAO IMPLEMENTATION 68

The final compositing changes slightly

• the direct lighting is already available in the gBuffer, calculated in the
geometry pass

• the filtered indirect light value must also be added to the final result

I = indirectLight +AO ∗ Ia + Id + Is

We show in 5.10 fig a comparison of an image rendered without ambient
obscurance, with ambient obscurance only, and with ambient obscurance
and indirect light. Both effects are modulated with a high “strength” pa-
rameter to better show the kind of effects achievable.

No testing was done, for time constraints and to not diverge too much
from the subject of our work, about the actual correspondence with ray-
traced single bounce indirect light calculation.

CHAPTER 5. SASSAO IMPLEMENTATION 69

Figure 5.10: no ambient obscurance, ambient obscurance only, ambient ob-
scurance and indirect light

Chapter 6

SaSSAO testing

Testing real-time rendering algorithms can be complicated: they aim to pro-
vide visually pleasing results to the human eye.

Anyway, an objective testing methodology can be helpful in evaluating
the validity of a rendering technique and in comparing it with other algo-
rithms.

In terms of quality, it makes sense to use an off-line rendered image, cal-
culated through ray tracing, as reference image: the more we can get close
tu such image with a real time renderer, the better. We use Blender to
render ray-traced ambient occlusion.

Of course a reference image is only the first step: we also need a met-
ric to define the similarity between two images. We adopt the Structural
Similarity (SSIM) Index, a metric that attempts to measure similarity
between images in a way somewhat consistent with the human eye percep-
tion.

We build a simple but effective testing infrastructure that allows as to
get the two rendered images (from our technique and from Blender) and
their SSIM evaluation with a couple of key-presses.

70

CHAPTER 6. SASSAO TESTING 71

6.1 Blender Ambient Occlusion

Using Blender to render ambient occlusion images, for the purpose of quality
comparison with a real-time technique, is relatively straightforward.

As we introduced in 2.2, ray-traced ambient occlusion is calculated by
casting rays from each visible point and calculating the percentage of them
obstructed by geometry.

There are a few parameters inherent the calculation of ambient occlusion
that we must discuss, accessible from the GUI (as shown by fig 6.1) but also
through Python scripting.

Figure 6.1: the blender panel showing most ambient occlusion related set-
tings

Rays are shot at the hemisphere according to a random pattern con-
trolled by the Sampling parameter, that features three options:

• Constant QMC: quasi-Monte Carlo, evenly and randomly distributed
rays

• Adaptive QMC: an improved version of QMC, that tries to determine

CHAPTER 6. SASSAO TESTING 72

when the sample rate can be lowered or the sample skipped

• Constant Jittered: samples are distributed according to a fixed grid

Constant QMC gives the best quality, and so it’s our choice for this pa-
rameter.

Then, we can configure the number of rays used, controlled by the
samples parameter. Of course more rays imply more accurate results and
slower render times.

The distance parameter defines how far the occluded geometry is con-
sidered as bringing occlusion. This somewhat maps to the maxDistance pa-
rameter of our technique implementation. A shorter distance can speed-up
rendering because it implies that the renderer has to search for intersections
in a narrower area.

We set this parameter on the basis of the maxDistance parameter cur-
rently set in YARS.

Moreover, there’s the attenuation setting. If enabled, the distance to the
occluding objects will influence the calculation: higher values of attenuation
strength will cause quicker falloff (that will result in shorter shadows).

The valid range for the attenuation strength parameter is 0...10.

The falloff function used by Blender is not defined in the documentation,
but a quick analysis of the source code shows that it’s an exponential with
negative exponent.

// from rayshade.c

if (RE_rayobject_raycast(R.raytree, &isec)) {
if (R.wrld.aomode & WO_AODIST)

fac+= expf(-isec.dist*R.wrld.aodistfac);
else

fac+= 1.0f;
}

The exp(x) function returns the exponential value of its parameter, that
is ex. So, we have:

e−intersectionDistance∗falloffStrength

CHAPTER 6. SASSAO TESTING 73

Being the falloff calculation different than our own (as the occlusion
estimate, anyway), we decide to disable the falloff in the Blender test renders.
This is left as an interesting note about where to look in the Blender C
source code in case someone wants to use it for more advanced comparisons
or alternative occlusion computation.

6.2 SSIM index

The Structural SIMilarity (SSIM) index, introduced in [WBSS04], is a method
for measuring the similarity between two images.

For applications in which images are ultimately to be viewed by human
beings, subjective evaluation is the ultimate method to quantify quality.
Of course, it is also inconvenient, expensive and error-prone, so research in
the field of objective image quality assessment tries to develop quantitative
measures that can automatically predict perceived image quality.

SSIM has been designed to be more consistent with the human eye per-
ception than other traditional methods of image comparison. It evaluates
change in structural information, assuming that pixels spatially close have
strong inter-dependencies, and that such dependencies carry important in-
formation about the structure of the objects in the image.

Going through the inner workings of SSIM is out of the scope of our
work, and is not needed to implement our testing system because there are
ready-to-use binaries1 implementing the comparison on image files.

6.3 Testing infrastructure

First, we have recreated our test scene in Blender, by loading the assets
and placing them appropriately. This could have been automatized too, by
writing a script to parse our .json scene description files, but wasn’t done
because, for time constraints, we limited testing to a single scene, implying
that automatic scene setup in Blender wasn’t needed.

Then, we have written a Python script that moves and rotates the cam-
era and adjusts a number of parameters related to the ambient occlusion

1we use a C++ implementation by Mehdi Rabah, based on OpenCV and downloadable
from http://mehdi.rabah.free.fr/SSIM/

http://mehdi.rabah.free.fr/SSIM/

CHAPTER 6. SASSAO TESTING 74

rendering. In this script, we have used a number of place-holder constants
that will be substituted later at runtime (by YARS) with actual values for
the current test.

In YARS, we bind to a key-press a simple function that reads the script
file and writes a copy of it in which the place-holder constants are substi-
tuted with the current camera settings (and a few other parameters, such
as the distance considered in the occlusion calculation). Also, a screen-shot
of the YARS rendered image is saved.

Simply executing the generated script in Blender produces the ray-traced
equivalent of the YARS saved-screenshot, and executes the SSIM utility that
compares the two images. The output of such utility is saved to a text file.

Figure 6.2 summarizes the process.
The file names of the text file and the images include the current test

values, avoiding name clashes.

Such testing environment is very simple but quite effective. With a little
more effort, YARS could be connected to Blender and continuously update
the camera and parameters. Then, a single command from YARS could
save the screenshot, launch the Blender render and, when finished, perform
the SSIM comparison and finally show/save the result. Another possible
improvement would be supporting a .json description of test cases that could
be automatically repeated, maybe trying different ranges of values for the
different parameters, finding which ones give better results in the SSIM
comparison.

CHAPTER 6. SASSAO TESTING 75

Figure 6.2: A diagram of our simple test infrastructure

CHAPTER 6. SASSAO TESTING 76

6.4 Test Results

Our testing system is equipped with an Intel Core i7-3820 CPU 3.60 Ghz,
16 GB of RAM and a GeForce GTX TITAN GPU.

We select a number of camera positions and capture screenshots while
varying some parameters. With the previously described infrastructure, we
launch off-line renderings in Blender from the same camera settings and do
batched SSIM index comparisons. The Blender renderings are done setting
64 as number of samples, a very high number that gives excellent quality
images (that take a few minutes to render). The resolution of all the images
is 1280x720 pixels.

Additionally, we have implemented the Alchemy algorithm, to be able
to evaluate SaSSAO against an already established technique. We imple-
mented Alchemy doing the minimal changes needed to our already active
pipeline, so we can share many parameters between the two techniques, and
have more meaningful comparisons. Only the shader function that creates
the AO-Buffer, in SaAoProcessingPassShader, was modified. Of course, this
also means that our implementation could be far from optimal, so results
are merely indicative.

Some results are encouraging, with our algorithm often giving results of
comparable quality to Alchemy (sometimes even slightly superior). Alchemy
does much less calculations for each sample, so with the same number of
sample is generally faster, but the interesting aspect is that with less sam-
ples and more calculations we sometimes get approximately the same quality
at similar frame rate. This could be useful in bandwidth-limited situations.

The ultimate truth, anyway, seems to be that adjusting properly the pa-
rameters is what can totally change the results. Also, we feel like an higher
SSIM index image is not always matching what would be picked by a hu-
man observer as the best result, so we’re not completely confident that such
index is a particularly effective metric for ambient obscurance comparisons.
For example, sometimes, smoother images taken with more samples receive
a lower SSIM index, as you can see from the following tables.

Unfortunately, due to the high number of parameters combinations, we
can’t be exhaustive. Interested readers are encouraged to download our
source code and do their own tests.

CHAPTER 6. SASSAO TESTING 77

Tables are sorted by descending SSIM index, and for each technique the
rows with higher SSIM index and with the highest frame rate are highlighted.
For each scene, we show an image with the ray-traced render and the best
quality screenshot, according to SSIM, for each of the two techniques.

For saSSAO, we use the area of circumscribed circle as area approxima-
tion, and hemisphere sampling. For Alchemy, we use flat sampling because
it looks working definitely better. Other parameters are adjusted by hand
trying to have good results or to show some particular behaviour.

Here’s a list of the test scenes, followed by data tables and images.

• Lion head close up

◦ max distance 0.5, angle bias 0.3: table 6.1, figure 6.3

◦ max distance 1.0, angle bias 0.3: table 6.2, figure 6.4

• Lion head and drapes

◦ max distance 0.25, angle bias 0.6: table 6.3, figure 6.5

◦ max distance 1.5, angle bias 0.4: table 6.4, figure 6.6

• Atrium (from top)

◦ max distance 0.8, angle bias 0.3: table 6.5, figure 6.7

• Atrium

◦ max distance 0.8, angle bias 0.3: table 6.6, figure 6.8

CHAPTER 6. SASSAO TESTING 78

Table 6.1: Lion head close up - max distance 0.5, angle bias 0.3

shared parameters saSSAO Alchemy

SSIM tech fps radius samples aoMul tDivs k \rho u
92,80% S 35,90 0,4 16 1 4
92,71% A 35,75 0,4 16 1 3
92,71% A 22,26 0,5 64 1 1 0,20 0,01
92,69% S 21,79 0,4 32 1 4
92,66% A 34,08 0,5 32 1 1 0,20 0,01
92,35% S 12,65 0,4 64 1 4
92,19% A 38,71 0,4 32 1 1 0,20 0,01
92,17% A 23,17 0,4 64 1 1 0,20 0,01
92,15% S 22,57 0,4 32 1 3
91,78% A 60,45 0,5 16 1 1 0,20 0,01
91,77% A 62,55 0,4 16 1 1 0,20 0,01

91,13% S 13,54 0,4 64 1 3
90,59% S 51,44 0,4 16 1 2

88,68% S 25,04 0,4 32 1 2
85,94% S 14,69 0,4 64 1 2
84,58% A 24,76 0,4 64 1 1 0,05 0,01
84,07% A 42,06 0,4 32 1 1 0,05 0,01
82,77% A 55,37 0,4 16 1 1 0,05 0,01

CHAPTER 6. SASSAO TESTING 79

Figure 6.3: Lion head close up - max distance 0.5, angle bias 0.3. Top:
saSSAO, SSIM 92,80%, 35,90 fps - bottom: Alchemy, SSIM 92,71%, 22.26
fps

CHAPTER 6. SASSAO TESTING 80

Table 6.2: Lion head close up - max distance 1.0, angle bias 0.3

shared parameters saSSAO Alchemy

SSIM tech fps radius samples aoMul tDivs k rho u
92,95% A 22,96 1 64 1 1 0,20 0,01
92,47% A 41,33 1 32 1 1 0,20 0,01
91,87% S 22,86 1 32 1 4
91,70% A 85,76 1 16 1 1 0,20 0,01

91,70% S 12,25 1 64 1 4
91,62% S 46,00 1 16 1 3
91,54% S 25,82 1 32 1 3
91,24% S 37,24 1 16 1 4
89,71% S 12,76 1 64 1 3
89,57% S 84,70 1 8 1 2

88,97% S 43,27 1 16 1 2
87,60% S 24,91 1 32 1 2
85,43% S 13,76 1 64 1 2

CHAPTER 6. SASSAO TESTING 81

Figure 6.4: Lion head close up - max distance 1.0, angle bias 0.3. Top:
saSSAO, SSIM 91,87%, 22,86 fps - bottom: Alchemy, SSIM 92,95%, 22.26
fps

CHAPTER 6. SASSAO TESTING 82

Table 6.3: Lion head and drapes - max distance 0.25, angle bias 0.6

shared parameters saSSAO Alchemy

SSIM tech fps radius samples aoMul tDivs k rho u
92,64% S 14,32 0,2 64 1 3
92,50% S 13,36 0,2 64 1 4
92,33% S 30,63 0,2 32 1 2
92,31% S 48,45 0,2 16 1 2
92,29% S 29,50 0,2 32 1 3
92,09% S 25,06 0,2 32 1 4
91,90% S 47,19 0,2 16 1 3
91,85% S 25,25 0,2 32 2 4
91,69% S 43,23 0,2 16 2 4
91,29% S 27,97 0,2 32 2 3
91,28% S 37,43 0,2 16 1 4
91,26% S 13,81 0,2 64 2 4
91,07% S 55,41 0,2 16 2 2

90,70% S 15,26 0,2 64 2 3
90,31% S 49,61 0,2 16 2 3
90,28% S 16,09 0,2 64 1 2
88,32% S 30,21 0,2 32 2 2
87,92% A 86,35 0,2 16 1 1 0,2 0,001

87,91% A 24,75 0,2 64 1 1 0,2 0,001
87,89% A 45,45 0,2 32 1 1 0,2 0,001
83,50% S 15,54 0,2 64 2 2

CHAPTER 6. SASSAO TESTING 83

Figure 6.5: Lion head and drapes - max distance 0.25, angle bias 0.6. Top:
saSSAO, SSIM 92,64%, 14,32 fps - bottom: Alchemy, SSIM 91,07%, 55.41
fps

CHAPTER 6. SASSAO TESTING 84

Table 6.4: Lion head and drapes - max distance 1.5, angle bias 0.4

shared parameters saSSAO Alchemy

SSIM tech fps radius samples aoMul tDivs k rho u
90,46% S 11,53 1,5 64 1 4
89,95% S 37,97 1,5 16 1 3
89,90% S 20,26 1,5 32 1 4
89,77% S 12,61 1,5 64 1 3
89,76% S 24,42 1,5 32 1 3
89,75% S 21,55 1,5 32 1,5 4
89,73% S 38,41 1,5 16 1,5 4
89,72% S 11,39 1,5 64 1,5 4
89,68% S 36,76 1,5 16 1 4
89,49% S 38,26 1,5 16 2 4
89,01% S 43,25 1,5 16 1 2

86,87% S 24,16 1,5 32 1 2
86,75% S 12,93 1,5 64 1 2
84,81% A 83,19 1,5 16 3 1 0,2 0,001

79,01% A 38,76 1,5 32 3 1 0,2 0,001
77,59% A 21,53 1,5 64 3 1 0,2 0,001

CHAPTER 6. SASSAO TESTING 85

Figure 6.6: Lion head and drapes - max distance 1.5, angle bias 0.4. Top:
saSSAO, SSIM 90,46%, 11,53 fps - bottom: Alchemy, SSIM 84,81%, 83.19
fps

CHAPTER 6. SASSAO TESTING 86

Table 6.5: Atrium (from top) - distance 0.8, angle bias 0.3

shared parameters saSSAO Alchemy

SSIM tech fps radius samples aoMul tDivs k rho u
85,51% S 35,59 0,8 16 3 4
84,62% S 22,97 0,8 32 3 4

82,29% S 44,78 0,8 16 3 3

81,16% A 84,10 0,8 16 3 1 0,15 0,01

81,15% S 25,49 0,8 32 3 3
81,04% S 12,10 0,8 64 3 4
78,33% A 43,35 0,8 32 3 1 0,15 0,01
77,09% A 22,91 0,8 64 3 1 0,15 0,01
76,88% S 42,18 0,8 16 3 2
75,86% S 12,95 0,8 64 3 3
70,89% S 26,20 0,8 32 3 2
66,34% S 13,24 0,8 64 3 2
62,37% A 83,90 0,8 16 3 1 0,5 0,01
59,09% A 43,46 0,8 32 3 1 0,5 0,01
58,65% A 23,78 0,8 64 3 1 0,5 0,01

CHAPTER 6. SASSAO TESTING 87

Figure 6.7: Atrium (from top) - max distance 0.8, angle bias 0.3. Top:
saSSAO, SSIM 85,51%, 35,59 fps - bottom: Alchemy, SSIM 81,16%, 84.10
fps

CHAPTER 6. SASSAO TESTING 88

Table 6.6: Atrium - distance 0.8, angle bias 0.3

shared parameters saSSAO Alchemy

SSIM tech fps radius samples aoMul tDivs k rho u
87,77% S 13,28 0,5 64 1 4
87,73% S 23,94 0,5 32 1 4
87,49% S 27,04 0,5 32 1 3
87,42% S 41,97 0,5 16 1 3
86,91% A 84,52 0,5 16 1 1 0,2 0,01

86,88% S 13,65 0,5 64 1 3
86,82% A 44,08 0,5 32 1 1 0,2 0,01
86,79% A 24,31 0,5 64 1 1 0,2 0,01
86,72% S 38,81 0,5 16 1 4
86,50% S 52,20 0,5 16 1 2

85,49% S 34,43 0,5 16 3 4
85,49% S 39,91 0,5 16 3 4
85,45% S 29,51 0,5 32 1 2
84,66% S 23,98 0,5 32 3 4
83,96% S 14,46 0,5 64 1 2
81,07% S 12,54 0,5 64 3 4
81,07% S 13,38 0,5 64 3 4
77,17% A 79,22 0,5 16 1 1 0,5 0,001
75,39% A 39,77 0,5 32 1 1 0,5 0,001
74,92% A 24,09 0,5 64 1 1 0,5 0,001

CHAPTER 6. SASSAO TESTING 89

Figure 6.8: Atrium - max distance 0.8, angle bias 0.3. Top: saSSAO, SSIM
87,77%, 13,28 fps - bottom: Alchemy, SSIM 86,91%, 84.52 fps

Chapter 7

Conclusions

We have developed a new technique in the field of Image-Space Ambient
Obscurance.

The general approach, based on deferred rendering and G-buffer sam-
pling, is common in the literature and shared by a number of algorithms in
the field.

Our original contribution consists in the use of a geometry shader to
approximate the area of occlusors, and in the adoption of a hemisphere dis-
cretization technique aimed at classifying the occlusors according to their
position. To estimate coverage, we use a solid-angle approximation derived
from our experiments with other algorithms and from some observations
related to the lack of data inherent to image-based algorithms.

This kind of approach, where we evaluate the level of occlusion consid-
ering the direction from which coverage comes from, storing such result in
our “triangle buckets”, allows to avoid over-occlusion and should generally
give an improved quality result thanks to the implicit weighting of samples
contributions.

Quality is in fact our primary concern, and we evaluate our results by
comparing the structural similarity with off-line rendered images calculated
through ray-tracing in Blender.

The results look encouraging, even if accurately evaluating the validity
and efficiency of the technique against others is quite complicated. Many pa-

90

CHAPTER 7. CONCLUSIONS 91

rameters are involved, and even if the source code of some other techniques
is available, comparisons are all but straightforward: different algorithms,
in many cases, don’t use the same parameters, and just minor adjustments
can dramatically change the quality of results and performance. Also, there
can be some scene dependency, causing some technique to perform better
than others only in some scenes.

We worked hard on having the fundamental parts of the implementation
easily customizable and swappable, even at runtime, to rapidly test different
formulas, rendering pipelines or sampling techniques. Many attempts that
didn’t bring to particularly good results have been omitted from this thesis
for brevity and time constraints.

We spent a substantial amount of time on the implementation, mainly
because we had decided to build a rendering sandbox from the ground up.
This was interesting and gave us total freedom, but in terms of compar-
ing techniques against each other, it would be nice if a single rendering
infrastructure would become popular in the computer graphics community,
allowing everyone working in the field to fairly compare techniques or quickly
extends other algorithms when source code is provided. The G3D engine
looks like a promising platform in this perspective, and in hindsight using it
as a basis for our implementation could have been a wiser choice. It would
be interesting to port the technique to such engine and see if it gives better
performances.

7.1 Future work

Ambient obscurance and, generically, global illumination approximations
(for real-time rendering) are constantly improving, following the evolution
of hardware, APIs and literature.

We share some ideas that we couldn’t explore due to time constraints,
and give some references about other techniques approaching real-time global
illumination from other perspectives.

7.1.1 Directional occlusion, bent normals

Our pyramid of “triangle buckets” doesn’t only tell how much a point is
covered, but also from where (with customizable level of precision). This
could maybe exploited to achieve other kinds of results, such as “directional
occlusion” [RGS09], and could be used to calculate direct lighting using

CHAPTER 7. CONCLUSIONS 92

“bent normals”, normals adjusted to consider the direction from which more
incoming light will potentially reach the surface (that is, where there are no
occlusors).

7.1.2 Indirect lighting

Regarding indirect lighting calculation, we just scratched the surface of the
problem. Anyway, good far-field approximation of indirect light are impos-
sible to achieve with a basic image-space approach, for the lack of crucial
information due to non-visible areas.

Some work to address this kind of limitation has been recently shown in
[MML], where a “deep G-buffer” is used to keep a second layer of geometry-
related information, and used as a basis for a screen-space radiosity approx-
imation.

Alternatively, interesting results come from a drastically different ap-
proaches that could maybe be complemented by image-space techniques, as
is for example suggested in [RGS09]. We list a few techniques we think are
particularly interesting:

• Cascaded Light Propagation Volumes [Kap09]: implemented in
CryEngine3, works by calculating indirect low frequency light using a
3D grid and spherical harmonics

• Voxel Cone Tracing [CNS+11]: uses a real-time mesh voxalization
and octree building technique to obtain a discretization of the scene
suitable to indirect light calculation

• Imperfect Shadow Maps [RGK+08] and their proposed refinements:
they are themselves an improvement on the idea of Reflective Shadow
Maps [DS05], that build upon on the shadow mapping technique,
rendering the scene from the light sources positions and storing light-
ing information in the resulting buffers (instead of the depth used in
shadow mapping)

7.1.3 Compute shaders

Compute shaders, added in OpenGL 4.3, add another level of freedom in the
utilization of the GPU (in the direction of other general purpose APIs that
exploit GPUs and other parallel hardware, such as OpenCL and CUDA).

CHAPTER 7. CONCLUSIONS 93

Compute shaders operate differently from other shader stages: for ex-
ample, they have no well-defined set of input values and no frequency of
execution specified by the nature of the stage (once per vertex, once per
fragment...).

The added level of flexibility also adds, as always, a degree of complexity,
but that could be well worth facing if significant performance improvements
can be achieved. The first thing that comes to mind is a more efficient sam-
pling: our technique does a number of texture fetch operations (particularly
relevant to the efficiency of the technique) for each fragment. We get data
and can use it to calculate the obscurance value for the current fragment,
that is the only output that we can write to... then, maybe, for a close
fragment, we fetch again the same data. What if we could cache them in
some way, for example using the highly efficient GPU shared memory?

Very interesting results in the SSAO field, based on CUDA implementa-
tions, recently appeared in [Tim] and [Tim13].

7.1.4 Testing methodology and temporal coherence

A problem of many SSAO techniques, often overlooked, is their behaviour
with a moving camera: with the constantly changing scene information that
becomes available in image-space (due to the different viewing positions),
the obscurance calculation for the same area can vary depending on where
we are looking from. Areas suddenly getting darker or brighter with no rea-
son while moving into a scene can definitely ruin the immersion, especially
in the absence of a good direct lighting.

Our testing infrastructure could easily be extended to produce video se-
quences: the camera fly-through feature could save the camera position and
orientation for each rendered frame. Such data could then used to generate
sequences of both YARS and Blender rendered images to be automatically
transformed into video files. Of course the SSIM index could be evaluated for
each couple of images and some global statistics could be derived, but more
interestingly, some measure of the obscurance change artefacts could be de-
rived from the comparison with a window of previous frames. That could be
a basis to design an algorithm to detect and avoid such artefacts when cal-
culating the obscurance, exploiting information from previous frames kept
available (similarly to what is done in motion blur implementations).

Bibliography

[Aal] Frederik P. Aalund. A comparative study of screen-space ambi-
ent occlusion methods. 3, 3.4

[AMHH11] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-
time rendering. 2011. 4

[Bli77] James F Blinn. Models of light reflection for computer syn-
thesized pictures. In ACM SIGGRAPH Computer Graphics,
volume 11, pages 192–198. ACM, 1977. 2.4

[BSD08] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. Image-space
horizon-based ambient occlusion. In ACM SIGGRAPH 2008
talks, page 22. ACM, 2008. 3.5

[Bun05] Michael Bunnell. Dynamic ambient occlusion and indirect light-
ing. Gpu gems, 2(2):223–233, 2005. 3.1, 4.2.2, 5.6

[CNS+11] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and
Elmar Eisemann. Interactive indirect illumination using voxel
cone tracing. In Computer Graphics Forum, volume 30, pages
1921–1930. Blackwell Publishing Ltd, 2011. 7.1.2

[Dog12] Michael Doggett. Texture caches. Micro, IEEE, 32(3):136–141,
2012. 5.5.5

[DS05] Carsten Dachsbacher and Marc Stamminger. Reflective shadow
maps. In Proceedings of the 2005 symposium on Interactive 3D
graphics and games, pages 203–231. ACM, 2005. 7.1.2

[EHF+] Kevin Egan, Daniel J Hilferty, US Air Force, Daniel F Keefe,
Morgan McGuire, Casey O’Donnell, Peter G Sibley, Corey Tay-
lor, Electronic Arts, and Tom Wardill. The g3d engine as plat-
form for research and education. 1.2.1

94

BIBLIOGRAPHY 95

[FM08] Dominic Filion and Rob McNaughton. Effects & techniques. In
ACM SIGGRAPH 2008 Games, pages 133–164. ACM, 2008. 3.4

[Gra13] Lorents Odin Grav̊as. Image-space ambient obscurance in webgl.
2013. 3, 4.2.3

[Kap09] Anton Kaplanyan. Light propagation volumes in cryengine 3.
ACM SIGGRAPH Courses, 2009. 7.1.2

[KSMY07] Pankaj Khanna, Mel Slater, Jesper Mortensen, and Insu Yu.
A non-parametric guide for radiance sampling in global illumi-
nation. Computer Graphics, Imaging and Visualisation, 2007.
CGIV’07, pages 41–48, 2007. 4.1, 1, 2

[Lam60] Jean-Henri Lambert. JH Lambert,... Photometria, sive de Men-
sura et gradibus luminis, colorum et umbrae. sumptibus viduae
E. Klett, 1760. 2.4.2

[LB00] Michael S Langer and Heinrich H Bülthoff. Depth discrimination
from shading under diffuse lighting. Perception, 29(6):649–660,
2000. 2.2

[Mit07] Martin Mittring. Finding next gen: Cryengine 2. In ACM
SIGGRAPH 2007 courses, pages 97–121. ACM, 2007. 3.3

[MML] Michael Mara, Morgan McGuire, and David Luebke. Lighting
deep g-buffers: Single-pass, layered depth images with minimum
separation applied to indirect illumination. 7.1.2

[MML12] Morgan McGuire, Michael Mara, and David Luebke. Scalable
ambient obscurance. In Proceedings of the Fourth ACM SIG-
GRAPH/Eurographics conference on High-Performance Graph-
ics, pages 97–103. Eurographics Association, 2012. 3.6

[MOBH11] Morgan McGuire, Brian Osman, Michael Bukowski, and Padraic
Hennessy. The alchemy screen-space ambient obscurance algo-
rithm. In Proceedings of the ACM SIGGRAPH Symposium on
High Performance Graphics, pages 25–32. ACM, 2011. 2.3, 3.6,
4.2.2

[PH10] Matt Pharr and Greg Humphreys. Physically based rendering:
From theory to implementation. 2010. 2.1, 4.6

BIBLIOGRAPHY 96

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures.
Communications of the ACM, 18(6):311–317, 1975. 2.4

[RDGK12] Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and
Jan Kautz. The state of the art in interactive global illumina-
tion. In Computer Graphics Forum, volume 31, pages 160–188.
Blackwell Publishing Ltd, 2012. 3

[RGK+08] Tobias Ritschel, Thorsten Grosch, Min H Kim, H-P Seidel,
Carsten Dachsbacher, and Jan Kautz. Imperfect shadow maps
for efficient computation of indirect illumination. ACM Trans-
actions on Graphics (TOG), 27(5):129, 2008. 7.1.2

[RGS09] Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. Ap-
proximating dynamic global illumination in image space. In
Proceedings of the 2009 symposium on Interactive 3D graphics
and games, pages 75–82. ACM, 2009. 5.6, 7.1.1, 7.1.2

[SA07] Perumaal Shanmugam and Okan Arikan. Hardware accelerated
ambient occlusion techniques on gpus. In Proceedings of the
2007 symposium on Interactive 3D graphics and games, pages
73–80. ACM, 2007. 3.2

[SHR10] Cyril Soler, Olivier Hoel, and Frank Rochet. A deferred shad-
ing pipeline for real-time indirect illumination. In ACM SIG-
GRAPH 2010 Talks, page 18. ACM, 2010. 5.6

[Tim] Ville Timonen. Screen-space far-field ambient obscurance. 7.1.3

[Tim13] Ville Timonen. Line-sweep ambient obscurance. In Computer
Graphics Forum, volume 32, pages 97–105. Blackwell Publishing
Ltd, 2013. 7.1.3

[TL04] Eric Tabellion and Arnauld Lamorlette. An approximate global
illumination system for computer generated films. In ACM
Transactions on Graphics (TOG), volume 23, pages 469–476.
ACM, 2004. 1.1.5

[WBSS04] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: From error visibility to
structural similarity. Image Processing, IEEE Transactions on,
13(4):600–612, 2004. 1.2, 6.2

BIBLIOGRAPHY 97

[ZIK98] Sergey Zhukov, Andrei Iones, and Grigorij Kronin. An ambient
light illumination model. In Rendering Techniques’ 98, pages
45–55. Springer, 1998. 2.3

Appendix A

Appendix

A.1 Additional material and code listings

Currently, as measured with sloccount, the YARS source code including the
technique implementation is around 12k lines of C++, not counting the
GLSL shaders. As we are more interested in saving trees than making the
printed version of the thesis look thicker, we decided to not include the full
source code here (that, anyway, would benefit some refactoring and clean-up
before publishing).

A digital version of this thesis, related slides, full source code of the
implementation and a prebuilt demo can be obtained browsing these URLs:

• http://isis.dia.unisa.it/wiki/index.php?title=User:Darsca

• http://www.duskzone.it/works/unisa/masterThesis

• http://github.com/darioscarpa/YARS

98

http://isis.dia.unisa.it/wiki/index.php?title=User:Darsca
http://www.duskzone.it/works/unisa/masterThesis
http://github.com/darioscarpa/YARS

	Introduction
	Basic Concepts
	Rendering
	Light, color, shading
	Local and Global Illumination
	Ambient Light and Ambient Obscurance
	Indirect Lighting
	Image-Space methods and Deferred Rendering

	Objectives and results
	Implementaton details

	Contents overview

	Theoretical foundations
	Solid Angle
	Ambient Occlusion
	Ambient Obscurance
	Blinn-Phong Reflection model
	Surface Materials and Light Sources
	Direct Lighting
	Ambient Lighting
	Adding ambient obscurance to the model

	Related works
	2005 - Dynamic Ambient Occlusion and Indirect Lighting
	2007 - Hardware Accelerated Ambient Occlusion Techniques on GPUs
	2007 - CryEngine2 Screen Space Ambient Occlusion
	2008 - StarCraft 2 Ambient Occlusion
	2008 - Image-space horizon-based ambient occlusion
	2011 - Alchemy Screen-Space Ambient Obscurance

	SaSSAO: Solid Angle based SSAO
	Hemisphere Partitioning
	Partitioning for the whole hemisphere

	Ambient Obscurance calculation
	Area Calculation
	AO calculation
	AO filtering

	SaSSAO implementation
	OpenGL and GLSL
	YARS
	Supporting libraries
	Architecture
	Scene Management
	Rendering
	Shaders

	Deferred Shading
	SaSSAO rendering pipeline
	Initialization
	Geometry Pass
	Obscurance Processing Pass
	Filtering/Compositing Pass

	Parameters and performance
	aoMultiplier
	Number of Samples
	Number of triangle buckets
	Sampling Pattern
	Sampling Radius
	Max Distance
	Angle Bias

	Adding indirect illumination
	Pipeline modification

	SaSSAO testing
	Blender Ambient Occlusion
	SSIM index
	Testing infrastructure
	Test Results

	Conclusions
	Future work
	Directional occlusion, bent normals
	Indirect lighting
	Compute shaders
	Testing methodology and temporal coherence

	Bibliography
	Appendix
	Additional material and code listings

